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Abstract. Path sums and Gaussian short-time propagators are used to solve two-dimensional
Fokker-Planck models of lower-hybrid (LH) and electron-cyclotron (EC) current drive (CD),
and are shown to be well suited to the two limiting situations where the rf quasilinear diffusion

coefficient is either relatively smal, D, » 0.1, or very large, D, ® ¥ , the latter case enabling
a special treatment. Results are given for both LHCD and ECCD in the small D, case, whereas

the limiting situation is illustrated only for ECCD. To check the accuracy of path-sum
calculations, comparisons with finite difference solutions are provided.

INTRODUCTION

As is wdl known, dectron kinetics plays a fundamentd role in sudies of current
drive (CD) in plasmas usng rf power, such as with eectron-cyclotron (EC) and lower-
hybrid (LH) waves, being usualy modeled by some appropriate form of the Fokker-
Planck (FP) equation [1]. For such complex models there is no recourse other than to
resort to some kind of numericd cdculation, the most widespread approach consiting
in directly solving the FP equation by means of finite differences [2]. Still, dternative
approaches such as the use of Monte Carlo and propagators have found increased
acceptance, as they are known to offer a very smple and clear picture of the kinetics
involved and lead, moreover, to a draghtforward numerica implementation. Of these,
the use of Gaussan short-time propagators to numericdly evauate solutions to FP
equaions as path sums has been gaining some interest as a vauable dterndive to
Monte Carlo, over which they have advantages both in terms of accuracy and
computationd efficiency [3].

The fundamenta building block of the path-sum gpproach is the short-time
propagator solution to the FP equation satiSfying a Dirac ¢-like initid condition which,
for appropriately short times 7, is known to be a Gaussan distribution function [3].
With this method, any initid didribution function f(v,t,) (in veocity space V) is
propagated during the time interva 7 by multiplying the didribution vector f(V,,t,),
which is a discrete representation in an appropriate grid at time t,, by the propagator
metrix T(V,,vV,,,t). The latter gives the probability for the trangtion from the point Vv,

incdl | to the entire cdl m, so that for any finite time the process reduces to the smple
multiplication of matrices by vectors.



PATH-SUM SOLUTIONS FOR RF CURRENT DRIVE

The path-sum gpproach was employed to solve a few wel-known two-dimensond
(2-D) modds of LHCD and ECCD. For paticle-paticle collisons the usud
assumptions were used [1,2]: a homogeneous and azimuthdly symmetric plasma
(about the apllied magnetic fidd, B,); and collisons redricted to the non-reativigic
limit, and such tha the test dectrons interact with a nonevolving Maxwedlian
digribution of bulk dectrons a a given temperaure T to which they tend to
equilibrate. In the case of the wave-paticle interaction, the common quaslinear
diffuson limit was consdered for both LH and EC waves[2].

A frequently used approach in ECCD and LHCD cdlculétions is to utilize a mode
fom for the queslinear diffuson coefficent p, (w) in which p,(w)=D indde the
resonant region (delimited by w, and w,) and D, (w)=0 otherwise, where w is the
velocity component parald to B, and D is a congtant [1,2]. However, to avoid the
limitetions imposed on the pathhrsum goproach by shap discontinuities in  the
quesilinear diffuson coefficient (which are fdt in the case of LHCD done), b, (w) is
considered to be divided in three parts: the normd region where b, (w)=D, and two
symmelric (sine-type) ramps of width dw, such that the resulting b, (w) forms an
overdl smooth function [3].

The pah sum method is illusrated here with the following cases @ LHCD with
D=01, w, =4, w,=5,and dw=1; b) ECCD with D=01, w, =4, and w, =5; C)
ECCD with D=025, w, =4, and w, =5; and d) ECCD with D® ¥, w, =4.15, and
w, =5. All these cases were solved in the spherical coordinates v and q, on a grid
with v'q=300" 192 cdls in the region ddimited by v, =10.0, and usng a time
stept =0.1.

The ECCD example with D® ¥ enables a specid treatment built on a method
dready proposed for finite-difference caculations that is based on the observation
that, in such a case, the waves induce a flattening of the distribution in the direction in
which they accelerate the particles, i.e. S¥f /v =0, where S is a unitary vector in
that direction [4]. Accordingly, in the path-sum approach, the resonance is divided into
an appropriate number of strips aigned adong S (the direction perpendicular to B, in

the ECCD case) and, ether the propagator (accounting for collisons and waves) is
computed dlowing for this leveing effect of the waves or dse the flatening is
introduced directly in the didtribution function that results from the evolution produced
by the propagator (which, now, considers the effect of collisons done). Note that the
latter scheme is less demanding on computer resources (both in terms of time and
memory), snce it leads to much smdler propagator matrices, even if the flatening
operation, which must be performed each time step, takes some time.

To check the accuracy of propagator caculations, whose outcome appears in Figs.
1, 2, and 3, tests are provided againgt the corresponding finite-difference solutions, for
al bu the ECCD case with D® ¥, which is to be compared to results appearing in the
literature [4]. In this case, the lower limit of the resonant region was chosen to be



w, = 4.15, in order to match the results given in Fig.3 of Ref. [4], where the flatening
of the digribution does not start exactly a w, =4.0 (but somewhat higher), and the
reported steady-state current is 3” 10°°. With w, =4.15, path sums lead to a steady-
date curent of 291" 10°°, wheress for w,=4.0 they lead to an increased vaue of
559" 10°3.
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FIGURE 1. Steady-state distributions for cases a), b), and c).
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FIGURE 2. Evolution of the rf current for cases a) and c).



For the cases in Fig. 1, the Steady-date currents obtained from path sums and finite
differences were, respectivdy: @ 8.10° 10° and 8.03° 10°%; b) 9.38" 10° and
8.6710°°;¢) 3.38" 10* and 3.07" 10°*.
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FIGURE 3. Steady-state distribution and evolution of the rf current for case d).

CONCLUSIONS

The comparison between path-sum and finite-difference cdculaions shows that
Gaussan short-time propagators are wel suited in the two limiting Stuations where
the rf quasliner diffuson coefficent is dther rdaivdy smdl or very lage
Unfortunately, for intermediate vaues, D, »1, and owing to time-step redtrictions and

concomitant condraints on grid spacing, the handling of very large propagator
matrices is required when solving 2-D FP equations, which may dl add up to
extremely demanding computational cods.
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