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Abstract. Path sums and Gaussian short-time propagators are used to solve two-dimensional 
Fokker-Planck models of lower-hybrid (LH) and electron-cyclotron (EC) current drive (CD), 
and are shown to be well suited to the two limiting situations where the rf quasilinear diffusion 

coefficient is either relatively small, 1.0≈rfD , or very large, ∞→rfD , the latter case enabling 

a special treatment. Results are given for both LHCD and ECCD in the small 
rfD  case, whereas 

the limiting situation is illustrated only for ECCD. To check the accuracy of path-sum 
calculations, comparisons with finite difference solutions are provided. 

INTRODUCTION 

As is well known, electron kinetics plays a fundamental role in studies of current 
drive (CD) in plasmas using rf power, such as with electron-cyclotron (EC) and lower-
hybrid (LH) waves, being usually modeled by some appropriate form of the Fokker-
Planck (FP) equation [1]. For such complex models there is no recourse other than to 
resort to some kind of numerical calculation, the most widespread approach consisting 
in directly solving the FP equation by means of finite differences [2]. Still, alternative 
approaches such as the use of Monte Carlo and propagators have found increased 
acceptance, as they are known to offer a very simple and clear picture of the kinetics 
involved and lead, moreover, to a straightforward numerical implementation. Of these, 
the use of Gaussian short-time propagators to numerically evaluate solutions to FP 
equations as path sums has been gaining some interest as a valuable alternative to 
Monte Carlo, over which they have advantages both in terms of accuracy and 
computational efficiency [3]. 

The fundamental building block of the path-sum approach is the short-time 
propagator solution to the FP equation satisfying a Dirac d-like initial condition which, 
for appropriately short times t, is known to be a Gaussian distribution function [3]. 
With this method, any initial distribution function f( 0, tv

r
) (in velocity space v

r
) is 

propagated during the time interval t by multiplying the distribution vector f( 0,tvl

r
), 

which is a discrete representation in an appropriate grid at time 0t , by the propagator 

matrix ),,( τml vvT
rr

. The latter gives the probability for the transition from the point lv
r

 
in cell l to the entire cell m, so that for any finite time the process reduces to the simple 
multiplication of matrices by vectors. 



PATH-SUM SOLUTIONS FOR RF CURRENT DRIVE  

The path-sum approach was employed to solve a few well-known two-dimensional 
(2-D) models of LHCD and ECCD. For particle-particle collisions, the usual 
assumptions were used [1,2]: a homogeneous and azimuthally symmetric plasma 
(about the apllied magnetic field, 0B ); and collisions restricted to the non-relativistic 
limit, and such that the test electrons interact with a nonevolving Maxwellian 
distribution of bulk electrons at a given temperature T to which they tend to 
equilibrate. In the case of the wave-particle interaction, the common quasilinear 
diffusion limit was considered for both LH and EC waves [2]. 

A frequently used approach in ECCD and LHCD calculations is to utilize a model 
form for the quasilinear diffusion coefficient ( )wDrf

 in which ( ) DwDrf =  inside the 

resonant region (delimited by 
1w  and 

2w ) and ( ) 0=wDrf
 otherwise, where w is the 

velocity component parallel to 0B  and D is a constant [1,2]. However, to avoid the 
limitations imposed on the path-sum approach by sharp discontinuities in the 
quasilinear diffusion coefficient (which are felt in the case of LHCD alone), ( )wDLH

 is 
considered to be divided in three parts: the normal region where ( ) DwDLH = , and two 
symmetric (sine-type) ramps of width wδ , such that the resulting ( )wDLH

 forms an 
overall smooth function [3]. 

The path sum method is illustrated here with the following cases: a) LHCD with 
1.0=D , 41 =w , 52 =w , and 1=wδ ; b) ECCD with 1.0=D , 41 =w , and 52 =w ; c) 

ECCD with 25.0=D , 41 =w , and 52 =w ; and d) ECCD with ∞→D , 15.41 =w , and 
52 =w . All these cases were solved in the spherical coordinates v  and θ , on a grid 

with 192300×=×θv  cells in the region delimited by 0.10max =v , and using a time 

step 1.0=τ . 
The ECCD example with ∞→D  enables a special treatment built on a method 

already proposed for finite-difference calculations that is based on the observation 
that, in such a case, the waves induce a flattening of the distribution in the direction in 
which they accelerate the particles, i.e. 0/ =∂∂⋅ vfS

rr
, where S

r
 is a unitary vector in 

that direction [4]. Accordingly, in the path-sum approach, the resonance is divided into 
an appropriate number of strips aligned along S

r
 (the direction perpendicular to 0B  in 

the ECCD case) and, either the propagator (accounting for collisions and waves) is 
computed allowing for this leveling effect of the waves, or else the flattening is 
introduced directly in the distribution function that results from the evolution produced 
by the propagator (which, now, considers the effect of collisions alone). Note that the 
latter scheme is less demanding on computer resources (both in terms of time and 
memory), since it leads to much smaller propagator matrices, even if the flattening 
operation, which must be performed each time step, takes some time. 

To check the accuracy of propagator calculations, whose outcome appears in Figs. 
1, 2, and 3, tests are provided against the corresponding finite-difference solutions, for 
all but the ECCD case with ∞→D , which is to be compared to results appearing in the 
literature [4]. In this case, the lower limit of the resonant region was chosen to be 



15.41 =w , in order to match the results given in Fig.3 of Ref. [4], where the flattening 
of the distribution does not start exactly at 0.41 =w  (but somewhat higher), and the 

reported steady-state current is 3103 −× . With 15.41 =w , path sums lead to a steady-

state current of 31091.2 −× , whereas for 0.41 =w  they lead to an increased value of 
31059.5 −× .  
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FIGURE 1.  Steady-state distributions for cases a), b), and c). 
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FIGURE 2.  Evolution of the rf current for cases a) and c). 



For the cases in Fig. 1, the steady-state currents obtained from path sums and finite 
differences were, respectively: a) 31010.8 −×  and 31003.8 −× ; b) 51038.9 −×  and 

51067.8 −× ; c) 41038.3 −×  and 41007.3 −× . 
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FIGURE 3.  Steady-state distribution and evolution of the rf current for case d). 

CONCLUSIONS 

The comparison between path-sum and finite-difference calculations shows that 
Gaussian short-time propagators are well suited in the two limiting situations where 
the rf quasilinear diffusion coefficient is either relatively small or very large. 
Unfortunately, for intermediate values, 1≈rfD , and owing to time-step restrictions and 

concomitant constraints on grid spacing, the handling of very large propagator 
matrices is required when solving 2-D FP equations, which may all add up to 
extremely demanding computational costs.  
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