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Introduction Flux tube turbulence codes, such as DALF [1], are applicable to the

region inside the magnetic separatrix, where the field lines are closed. In the scrape-off

layer (SOL) of the plasma, the magnetic field lines are open and strongly deformed due

to proximity of the separatrix. Using similar methods to those behind the construction

of the globally consistent flux tube formulation in DALF [2,3], we construct a flux tube

Hamada coordinate system which allows computations in the SOL region. The new

geometry is then calculated for a real ASDEX Upgrade magnetic field configuration.

From this calculation we obtain the geometrical information needed for the DALF

codes. The influence of the geometry on the turbulence dynamics is briefly addressed.

The geometry The equations of the DALF flux tube turbulence models have several

operators which are geometry dependent, namely, the E×B advection ∂/∂t+vE · ∇,

the perpendicular Laplacian ∇2

⊥, the parallel gradients ∇‖ and divergences B∇‖ (1/B)

and the magnetic divergence terms K = −∇ · [(c/B2)B ×∇]. Also noteworthy here

is the assumption that the plasma is magnetised, from which the perpendicular and

parallel dynamics largely separate, as the first favours large wavelengths whereas the

other favours smaller ones, that is k⊥ � k‖. This is usually referred to as the flute

mode character, and has a strong impact on the appropriate choice of the geometry

model to use.

The geometry itself is established by the equilibrium magnetic field present in the

plasma, which is obtained by solving the Grad-Shafranov equation, a consequence of

scalar pressure equilibrium J×B = c∇p. A nested set of surfaces (2-tori) is assumed,

forming an axisymmetric geometrical system for which there is a natural choice of

coordinates. These are a radial flux label coordinate (by definition constant within a

given surface) and two angular coordinates corresponding to the poloidal and toroidal

directions.

On this general coordinate system we impose a set of convenient properties that

will ultimately define the coordinates themselves. In our case we impose that the

flux label coordinate Ψ be a monotonic function and that θ and ζ are angle like

coordinates, normalised in such a way that, within a given flux surface, θ → θ+1 in a

complete poloidal loop and ζ → ζ +1 in a complete toroidal loop. We also impose the
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contravariant components of the field to be flux functions, B · ∇Ψ = 0, B · ∇θ = χ′

and B · ∇ζ = ψ′, with the primes denoting the partial derivative with respect to

the flux label coordinate (note that ψ is different from Ψ in this notation). Their

amplitudes are constrained by the Jacobian of the coordinate system, which should

also be constant within a given flux surface.

If we use the volume enclosed by the flux surface labeled by V as the flux label

coordinate, the Jacobian becomes unity and this constitutes the the standard definition

of Hamada coordinates [2,4]. In the present case, since we want to describe the SOL

region, where the field lines are strongly deformed and no longer closed, we can not

do that. Instead we choose the magnetic poloidal flux, here represented by Ψ. The

immediate consequence of it is the relaxation of the constraint for the Jacobian (JH =

∇θ ×∇Ψ · ∇ζ) which still is a flux label, but no longer unity. Note the change in the

order of the coordinates Ψ and θ so that the system remains right handed, due to the

assumption that the poloidal flux has its maximum value (Ψ0) in the magnetic axis,

and decreases towards zero, on the last closed flux surface.

The fact that the contravariant components of B are flux functions implies that

the field lines are straight. Consequently, the field pitch is also a flux function,

and in our case is given by q(Ψ) = ψ′/χ′. The magnetic field can be expressed as

B = [∇χ×∇ (ζ − qθ)] /JH and this property allows us to further transform the co-

ordinate system, aligning one of the coordinates with the field [3,5]. Namely, with the

transformation ϑ = θ and ξ = ζ − qθ we can express the magnetic field in its Clebsch

representation B = (χ′/JH)∇Ψ×∇ξ and, consequently, only one of its contravariant

components, the one corresponding to the field aligned coordinate Bϑ, does not van-

ish. It follows that ∇‖ = (χ′/B) ∂/∂ϑ, which illustrates the separation between the

parallel coordinate ϑ and the perpendicular ones, Ψ and ξ. Recalling the flute mode

character of the dynamics of the DALF model, the advantage becomes evident as we

can afford to have a coarser grid in the ϑ direction that favours the large space scales

while keeping higher resolution in perpendicular coordinates, where the spatial scales

are smaller. This translates in a great improvement in computational efficiency.

Following the formalism of the flux tube approximation [2,3], we restrict the radial

extent of our domain in order to neglect the Ψ dependence of all physical quanti-

ties, except when their gradients enter the main non-linearities of the model, namely,

the E × B advection terms and the contribution of the perturbed magnetic field to

the parallel gradients. We also neglect derivatives with respect to ϑ, based on flute

mode character ∂/∂ϑ � ∂/∂Ψ ∼ ∂/∂ξ, except in the case of parallel gradients and

divergences.

An appropriate rescaling of the coordinates is performed with x = (Ψ − Ψ1) /Ψ
′,

y = −aξ and s = L‖ϑ, where all the coefficients are constants. Note the minus sign in y
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due to the change in the coordinates, in order to maintain right-handedness. This also

applies for x, since Ψ′ < 0. The parallel connection length is given by L‖ = B0/χ
′ and

the global shear can be defined as ŝ = −Ψ′q′/B0. In the cylinder model these reduce

to the more familiar expressions L‖ = 2πqR and ŝ = (r/q) ∂q/∂r, with a representing

the minor radius of the plasma.

Finally, the shifted metric procedure described in [2,3] is also applied. It is a local

transformation which addresses the problem of the grid deformation due to the non-

orthogonality of the coordinates system, specially important in the ∇2

⊥ operator. It

forces the metric component gxy to vanish locally at a particular s = sk plane by

introducing an arbitrary shift α(x), only dependent on x, to the y coordinate. It is

given by α′
k(x) = (gxy/gxx)|s=sk

.

Numerical implementation In practice, to calculate the geometry, an intermediary

coordinate system (η,Ψ, φ) is needed for the Hamada integrals, where η is a parametric

coordinate giving the position along the magnetic field line in the poloidal plane. The

information about the magnetic field configuration for the tokamak ASDEX Upgrade

is obtained from the gridding code CARRE [6]. It provides the cylindrical coordinates

R = R(η,Ψ) and Z = Z(η,Ψ) along each poloidal flux surface, which we then in-

terpolate using bicubic splines [7]. This also allows us to calculate ∂R/∂η, ∂R/∂Ψ,

∂Z/∂η and ∂Z/∂Ψ at any given spatial location. Using the transformations rules for

(R,Z, φ) ↔ (η,Ψ, φ) we are able to express the partial derivatives ∂η/∂R, ∂η/∂Z,

∂Ψ/∂R and ∂Ψ/∂Z, which appear in the Hamada coordinates definitions, in terms of

the previous ones. With this technique all the spatial information about the magnetic

field is available and we proceed to the calculation of the integrals in η defining θ

and ζ. This is done using 10-point Gauss-Legendre quadrature [7], whose requirement

for high degree of smoothness explains the previous use of a third order interpolation

algorithm. The Hamada contravariant metric components are then obtained from the

coordinates using the definition gij = ∇xi ·∇xj. From those, applying the coordinates

transformation rules, the final flux tube metric components are eventually obtained.

With these quantities calculated, all the geometrical information needed for the terms

in the DALF model mentioned in the beginning is available, namely, the 7 geometri-

cal quantities gxx, gxy, gyy, B2, bs, Kx and Ky, all dependent only on the parallel s

coordinate.

Results The results presented correspond to a given ASDEX Upgrade magnetic field

equilibrium configuration with B0 = 1.85T. Note that the shifted metric procedure was

applied so that we show α′
k instead of gxy. In terms of the influence of these quantities

on the turbulence, B2(s) gives the variation of ρ2

s (drift scale) with θ, important as it

controls the polarization drift dynamics. The variation of gxy with same coordinate,

gives the local shear, here calculated by ∂α′
k/∂sk. The effect of the Shafranov shift
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is felt through gxx, which in our case shows a clear maximum, corresponding to the

rightmost side of the plasma in the figure where the flux surfaces are radially com-

pressed. The terms Kµ define the structure of the curvature effect and, finally, bs plays

a role in ∇ ·b = B · ∇ (1/B), a flux expansion in the parallel dynamics. Besides those

geometrical quantities mentioned, the Jacobian is also plotted, and we can see that it

is a flux function, but not unity as in standard Hamada coordinates.

The future work involves quantifying the influence of this geometry by performing

DALF turbulence simulations. One should stress here that the ratio Ly/Lx ∼ 20 is an

important result of treating properly the geometry. It plays a role when choosing the

grid domain for DALF, as the truncation of the total flux tube on the y coordinate

requires the proper treatment [3]. The issue of the boundary conditions on the divertor

plates given by Debye sheath physics is a central one.

Figure 1: Flux tube shifted metric geometrical quantities (normalised [1]) necessary for
DALF simulations (right), evaluated on the reference flux surface (blue) shown on the left
hand side figure. There, the corresponding SOL magnetic field configuration of ASDEX
Upgrade is depicted, as well as the grid calculated (equidistant in θ) for the geometry con-
struction. The origin of the θ axis corresponds to the divertor plate on the right side.
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