

1955

Chapin, Fuller, Pearson: 1954

Energia solar eléctrica (fotovoltaica)

António Vallera et al.

FCUL – Dep. Física, CFMC

Energia solar eléctrica

- Exemplos
- Vale a pena? A energia é pouca...
- O problema: \$\$... Situação actual e futuro
- Um pouco de ciência e tecnologia
- 3 mensagens

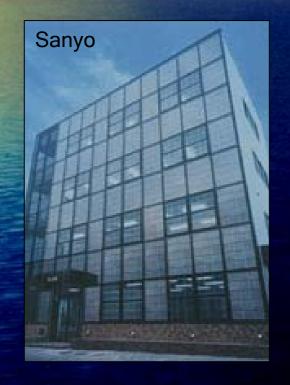
Exemplos

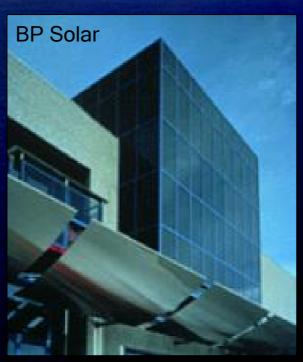
1958 Primeiro satélite com painel solar (Vanguard I)

Exemplos

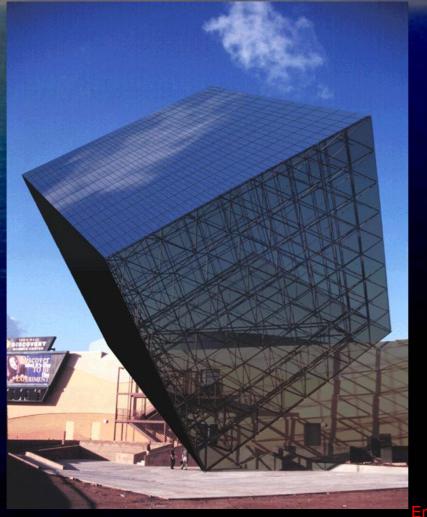
Amersfoort, Holanda

Telhas solares





Fachadas



Mais fachadas

Exemplos

Discovery Science Center Cube California, EUA

Exemplos

Sanyo Solar Ark Gifu, Japão

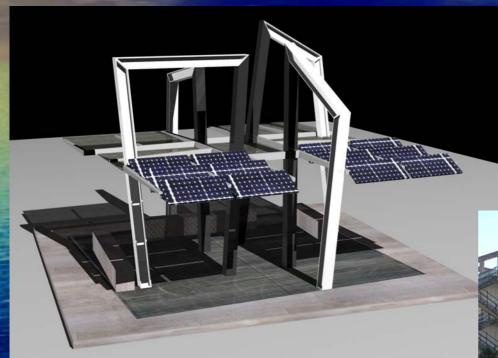
Exemplos

Exemplos

Solar Sailor, Sydney, Australia

Exemplos

Exemplos



Helios, NASA

Sistema PV de Demonstração (1)

Projecto da Faculdade de Ciências da Universidade de Lisboa

Caracteristicas:

- Potência: 2kW
- Silício monocristalino semitransparente
- Injecção na rede da energia produzida

Local: Campus da FCUL, Campo Grande

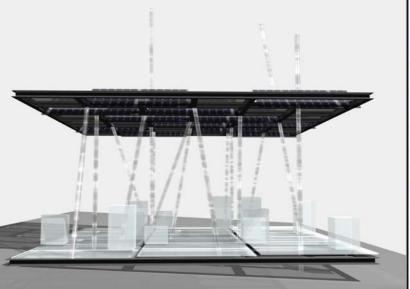
Objectivos:

- Divulgação electricidade solar
- Demonstração sistema PV
- Integração arquitectónica de PV
- Monitorização local e online

Sistema PV de Demonstração (2)

Projecto da Faculdade de Ciências da Universidade de Lisboa

Caracteristicas:


- Potência: 2kW
- Silício monocristalino semitransparente
- Injecção na rede da energia produzida

Local:

Jardim da Ciência, Oeiras

- Divulgação electricidade solar
- Demonstração sistema PV
- Integração arquitectónica de PV
- Monitorização local e online

Central Solar de Moura

Central Fotovoltaica na Amareleja, Concelho de Moura

- Capacidade instalada final: 62MWp
- 114ha terras não agrícolas
- Início instalação: ~ fim de 20??

Desenvolvimento local

- Parceria AMPER e BP Solar
- Tecnopolo:
 - > Fábricas locais de paineis solares e inversores
 - Parcerias I&D com Universidades (incluíndo FCUL)

CAFS

300 empregos directos, > 1000 indirectos

Mas é um mercado de nicho...

Valerá a pena?

A energia é pouca...

Radiação solar

 $S = 1367 \text{ W/m}^2$

Fluxo da radiação solar, por unidade de área, ao nível da órbita da Terra (a 150 milhões de km do Sol)

$$P = S \times 4 \pi r^2 = 3.87*10^{26} W$$

Potência total radiada pelo Sol

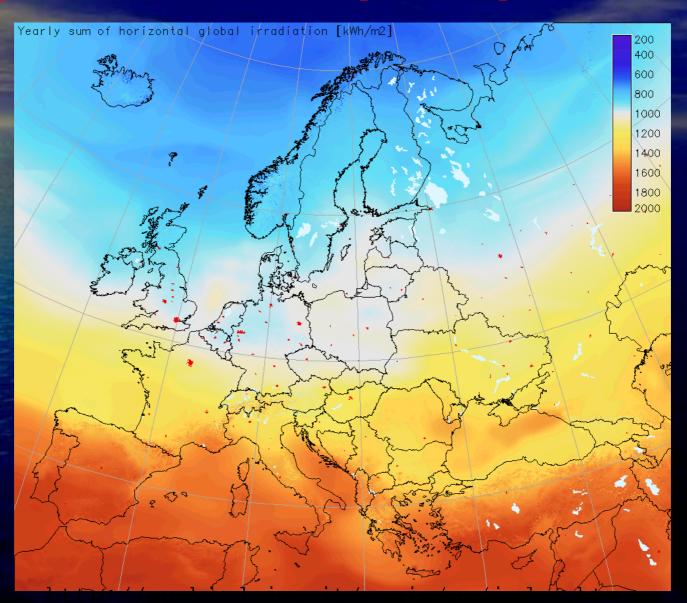
Área da esfera com r= raio da órbita da Terra

Energia radiada pelo Sol num segundo daria para satisfazer as necessidades energéticas mundiais actuais por ~1 milhão de anos!

Radiação solar

Mas voltemos à Terra, e pensemos em Portugal: que área seria necessária para satisfazer o nosso consumo eléctrico actual (5GW)?

 $A = 5GW/S = 3,66 \text{ km}^2$, ou seja, um com ~2km de lado


E se a eficiência de conversão fosse apenas 15%?

 $A = 5GW/(S*0,15) = 24,4 \text{ km}^2$, ou seja, um com ~5km de lado (no espaço, claro!)

Mas desçamos à Terra...

Irradiação anual acumulada [kWh/m²]

Potencial da electricidade solar em Portugal:

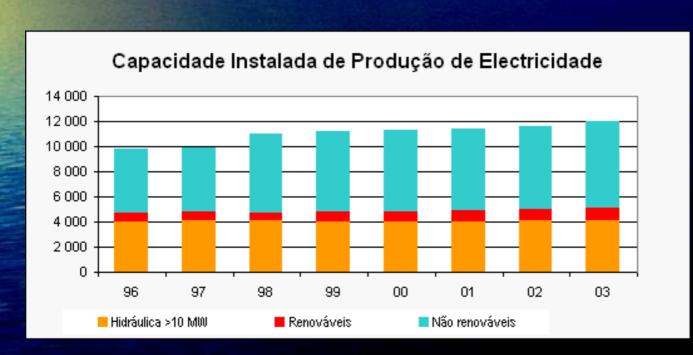
Radiação solar média em Portugal: 1500 kWh/m²/ano

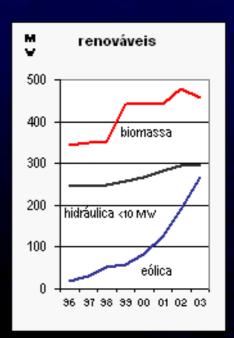
Com uma eficiência de conversão de 15%: 225 kWh/m²/ano

Consumo electricidade em 2002: 4.2 x10¹⁰ kWh/ano

Área total necessária para produzir 100% da electricidade consumida em 2002: 187km² < 20m²/pessoa

- Da ordem de grandeza da área disponível nas construções urbanas
- << que a área das estradas</p>




Desenvolvamos a electricidade solar!

- "Combustível" é universal e gratuito
- Não poluidor
- Não existem partes móveis, logo manutenção reduzida
- Modular, logo facilmente expansível
- Melhora a estética dos edifícios
- Pode substituir revestimentos (fachadas, telhados, etc)
- Melhora a rede eléctrica local
- Descentraliza a produção eléctrica

Capacidade de produção de energia eléctrica em Portugal: 1996 a 2003

MAS PORQUÊ AINDA TÃO POUCO?!

Por causa do custo!

Façamos uma conta rápida:

1W instalado produzirá em Portugal ~1,5kWh/ano; contando com uma vida útil de 30 anos, a energia total produzida por W instalado será

 $1,5kWh/ano \times 30 anos = 45 kWh$

Se atribuirmos ao kWh produzido junto ao consumidor um valor de €0,10, o valor da energia total produzida será €4,5/W. O preço de venda do W instalado tem de ser bem inferior a este valor, para uma aplicação maciça!

Parlamento Europeu

Resolução de 29 Set 2005 (Relatório Turmes)

- Reconhece que
 - "o desenvolvimento das tecnologias aplicadas às energias renováveis foi responsável pela criação de 300 000 postos de trabalho;"
 - "se alcançaram reduções dos preços impressionantes nos últimos 15 anos, mas observa que é necessário conseguir reduções ainda maiores, o que exige fortes incentivos";
- Congratula-se com o facto de a EU ser pioneira na maioria das tecnologias das energias renováveis

Parlamento Europeu

Resolução de 29 Set 2005 (Relatório Turmes)

Objectivos globais para 2020:

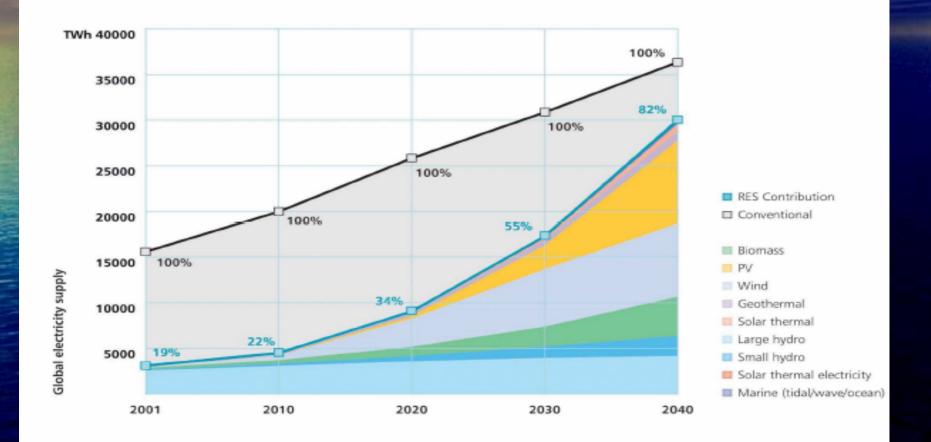
- Energias renováveis = 20% energia total;
 procurar condições para atingir 25%,
 considerados possíveis e desejáveis;
- Energias renováveis = 33% energia eléctrica

Parlamento Europeu

Resolução de 29 Set 2005 (Relatório Turmes)

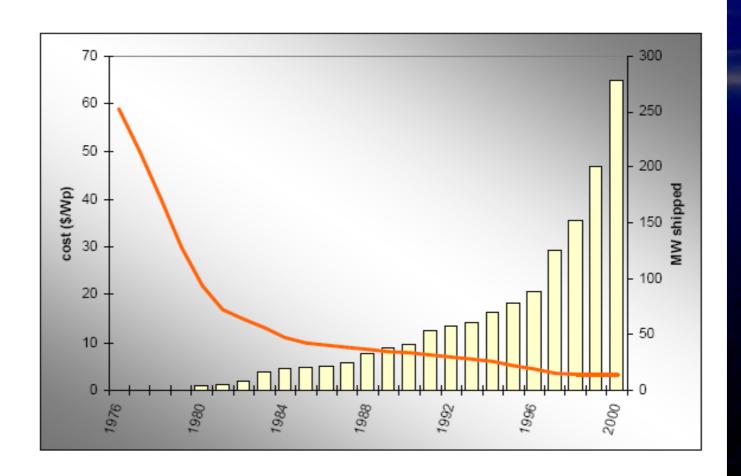
- "Salienta que (...) a energia fotovoltaica é ainda muito cara; incentiva a Comissão e os Estados-Membros
 - a promoverem medidas que reduzam custos, nomeadamente através da investigação e desenvolvimento, e
 - a preverem incentivos que permitam prosseguir a melhoria da tecnologia e a redução dos custos"

Exemplary detailed scenario for electricity – Advanced International Policy (AIP) scenario -

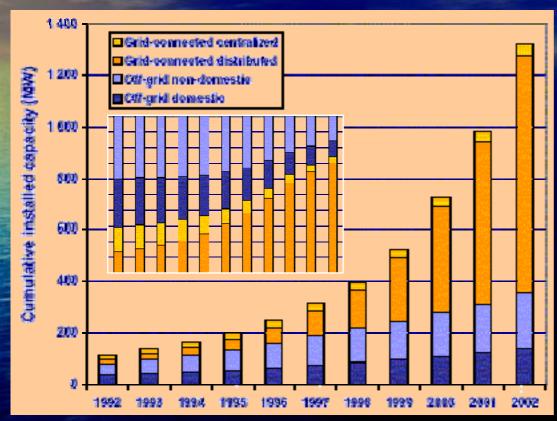

	2001	2010	2020	2030	2040
Total Consumption in TWh (IEA)	15578	19973	25818	30855	36346
Biomass	180	390	1010	2180	4290
Large Hydro	2590	3095	3590	3965	4165
Small Hydro	110	220	570	1230	2200
Wind	54,5	512	3093	6307	8000
PV	2,2	20	276	2570	9113
Solar Thermal	1	5	40	195	790
Geothermal	50	134	318	625	1020
Marine	0,5	1	4	37	230
Total RES	2988,2	4377	8901	17109	29808
RES Contribution	19,2%	21,9%	34,5%	55,4%	82,0%

Source: EREC, 2005 - European Renewable Energy Council

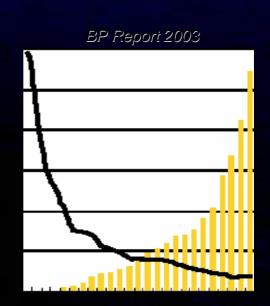
(http://www.erec-renewables.org/publications/scenario 2040.htm)



Exemplary detailed scenario for electricity – Advanced International Policy (AIP) scenario -


Source: EREC, 2005 - European Renewable Energy Council (http://www.erec-renewables.org/publications/scenario 2040.htm)

The falling cost of PV as Shipments increase



Source: Solar Generation (Greenpeace - EPIA)

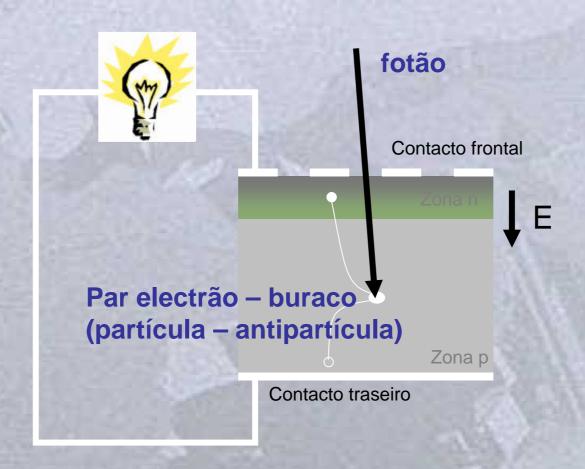
EIA Report 2003

Situação mundial:

- > 2 GW instalados
- > 1 GW instalados em 2004
- Crescimento >30% ao ano

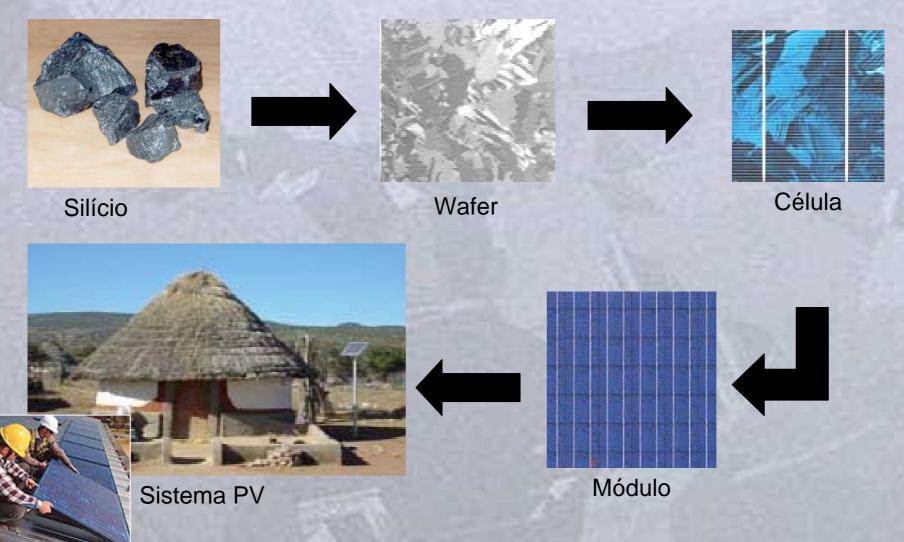
Situação em Portugal:

- ~ 2 MW instalados
- < 20% com ligação à rede (ao contrário da média mundial, ~75%)



Mas Moura...

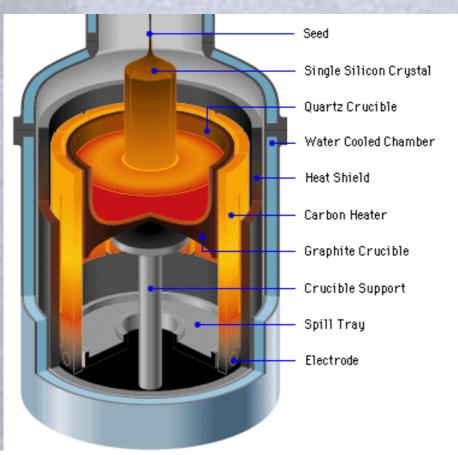
Um pouco de ciência e tecnologia

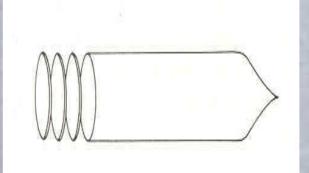


Como funciona uma célula solar

Como se faz uma célula solar ?

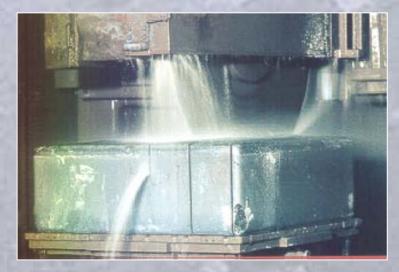
Produção de silício para aplicação solar


- Um dos elementos mais abundantes na crosta terrestre
- Hiato bem adaptado ao espectro solar

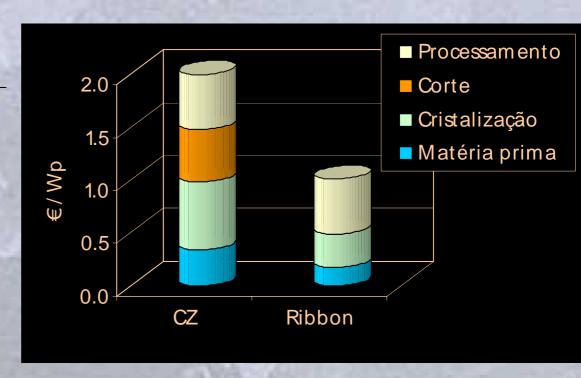

Energias do presente e do Futuro – 21 Nov 2005

Crescimento de silício monocristalino

Método de Czochralski



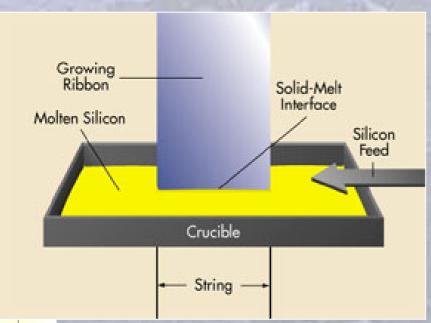
Crescimento de silício multicristalino: lingotes



O que é mais caro numa célula solar ?

	€/Wp	
Matéria prima	0.34	0.17
Cristalização	0.64	0.32
Corte	0.50	
Processamento	0.52	0.52
Total	2.00	1.01

Para reduzir o custo: procurar processos de cristalização do silício directamente em fita

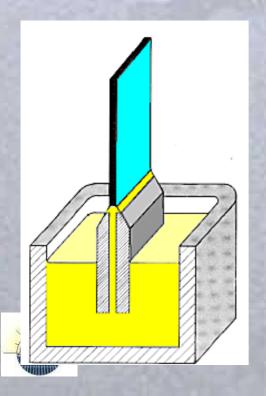

Crescimento de silício multicristalino: *fitas* (1)

String Ribbon

Espessura: 275 micron

Efficiência: célula 15%

módulo 9%


Crescimento de silício multicristalino: *fitas* (2)

Edge-defined film growth (EFG)

Espessura: 250 micron

Efficiência: célula 15%

módulo 12%

Caracterizado por:

• Cadinho de fundido

- Moldo para actabilização

Energias do presente e do Futuro - 21 Nov 2005

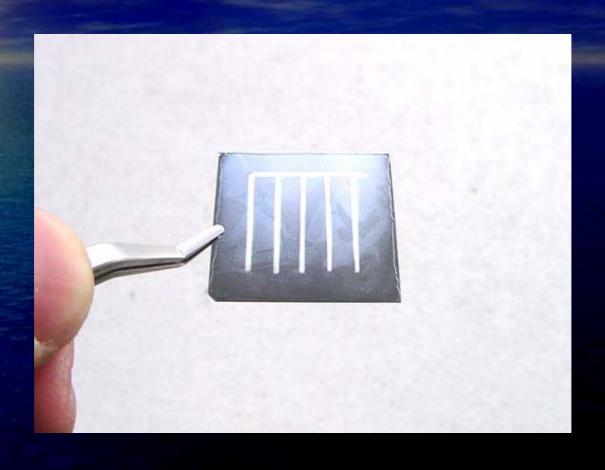
Crescimento de silício multicristalino: *fitas* (3)

Procura-se método caracterizado por:

- Processo contínuo
- Baixo consumo de energia
- Sem contaminação do silício com outros elementos
- Sem outros passos intermédios

Possível solução:

- Crescimento contínuo a partir de uma zona fundida fina
- Zona fundida alimentada directamente com silício granular
- Silício fundido nunca em contacto com outros materiais



Pedido de patente mundial pela FCUL PCT20040007, em 15 Abril de 2004

Célula Fotovoltaica

3 MENSAGENS

 Investimento em Portugal: I&D, qualidade/certificação, estímulo de estruturas industriais – ainda estamos a tempo, não devíamos perder outro combóio...

(estamos dispostos a pagar ~40M€/ano para montar paineis/sistemas, mas não reservamos nem 1€ para l&D - quando reconhecerão os políticos que temos uma comunidade com capacidade científica e tecnológica, que só necessita de estímulos para avançar nas tecnologias? O *cluster* fotovoltaico não deve ser construido apenas com telhado…)

3 MENSAGENS

- 2. Estímulos correctamente doseados: estimular em competição (objectivo é estimular a organização e a produção baixando preços)
- 3. Evitar deslumbramentos: 3ªs gerações, energias do futuro, ...: equilibrar presente, futuro próximo, longo prazo

