Formation of Plasmoid Chains due to Resonant Magnetic Perturbations

Luca Comisso

Politecnico di Torino and ISC-CNR, Italy

in collaboration with:

- D. Grasso, ISC-CNR and Politecnico di Torino, Italy
- F.L. Waelbroeck, Institute for Fusion Studies, USA

Magnetic Reconnection

- Magnetic reconnection is a process whereby the magnetic field line connectivity is modified due to the presence of a localized diffusion region.
- This gives rise to a change in magnetic field line topology and a release of magnetic energy into kinetic and thermal energy.

Spontaneous vs Forced Reconnection

- Magnetic reconnection in a given system is conventionally categorized as Spontaneous or Forced/Driven.
- Spontaneous magnetic reconnection refers to the cases in which the reconnection arises by some internal instability of the system or loss of equilibrium.
- Most typical paradigm —> Tearing mode
- Forced/Driven magnetic reconnection refers to the cases in which the reconnection is driven by some externally imposed flow or magnetic perturbation.
- Most typical paradigm —> Taylor problem

Forced Reconnection: Taylor Problem

 Assume a tearing-stable slab plasma with an equilibrium magnetic field of the form

$$\boldsymbol{B} = B_z \boldsymbol{e}_z + B_0 \left(\frac{x}{L}\right) \boldsymbol{e}_y$$

Forced Reconnection: Taylor Problem

 Assume a tearing-stable slab plasma with an equilibrium magnetic field of the form

$$\mathbf{B} = B_z \mathbf{e}_z + B_0 \left(\frac{x}{L}\right) \mathbf{e}_y$$

 Suppose that the conducting walls are subject to a sudden displacement

$$x_w \to \pm L \mp \Xi_0 \cos(ky)$$

Forced Reconnection: Taylor Problem

 Assume a tearing-stable slab plasma with an equilibrium magnetic field of the form

$$\boldsymbol{B} = B_z \boldsymbol{e}_z + B_0 \left(\frac{x}{L}\right) \boldsymbol{e}_y$$

 Suppose that the conducting walls are subject to a sudden displacement

$$x_w \to \pm L \mp \Xi_0 \cos(ky)$$

Determine the evolution of the forced reconnection process!

Forced Reconnection: Laboratory

Small non-axisymmetric magnetic perturbations generated by field-coil misalignments can drive magnetic reconnection in tearing-stable plasmas

Magnetic flux-surfaces

Plasma configuration in the Japanese Tokamak JT-60SA [Kikuchi *et al.,* JAEA R&D Review (2007)]

Forced Reconnection: Astrophysics

 Forced magnetic reconnection have been investigated also in astrophysical contexts, e.g., the coronal heating problem.

Su et al., Nature Phys. (2013)

Forbes, Nature Phys. (2013)

Hahm & Kulsrud Solution

 Hahm & Kulsrud [Hahm & Kulsrud, PoF (1985)] found two equilibria consistent with the boundary deformation.

$$\mathbf{B} = B_z \mathbf{e}_z + \nabla \psi \times \mathbf{e}_z \quad \text{with} \quad \psi(x, y) = \psi_0(x) + \psi_1(x) \cos(ky)$$

(I)
$$\psi_1(x) = B_0 \Xi_0 \frac{\sinh|kx|}{\sinh(kL)}$$
 (II) $\psi_1(x) = B_0 \Xi_0 \frac{\cosh(kx)}{\cosh(kL)}$

Magnetic reconnection allows the transition from equilibrium (I) to equilibrium (II)

But how the reconnection process evolves?

Hahm & Kulsrud Solution

- In order to determine the explicit evolution of the forced reconnection process, Hahm & Kulsrud solved an initial value problem (within the resistive MHD framework).
- They found the following time evolution of the reconnected magnetic flux:

Wang & Bhattacharjee Solution (+ Fitzpatrick)

- Wang & Bhattacharjee [Wang & Bhattacharjee, PoF B (1992)] showed that the Rutherford regime may be preceded by a nonlinear phase W [Waelbroeck, PoF B (1989)] with a current sheet
- Fitzpatrick [Fitzpatrick, PoP (2003)] reconsidered the works by H&K and W&B within the visco-resistive MHD framework.

Wang & Bhattacharjee Solution (+ Fitzpatrick)

 The occurrence of the Hahm & Kulsrud evolution or the Wang & Bhattacharjee evolution depends on the perturbation amplitude.

More Recent Works

• Dewar and coworkers [Dewar et al., PoP (2013)] found that Taylor's model admits static equilibrium solutions with plasmoids.

- But no attempt is made to determine a physical reconnection sequence.
 - It is not a study of reconnection!

More Recent Works

 Another evolution of the forced reconnection process has been pointed out and demonstrated in [Comisso et al., PoP (2015)].

 The plasmoid formation [Loureiro et al., PRL (2005)] plays a crucial role in allowing fast magnetic reconnection.

More Recent Works

This theory predict the threshold perturbation amplitude required to trigger the new scenario, as well as the analytical expression for the reconnection rate in the plasmoid-dominated regime.

Possible Scenarios of the Taylor Pb.

Hahm & Kulsrud, PoF (1985)

But what is const- ψ regime?

A const- ψ regime is one in which the outer magnetic flux and the reconnected flux are approximately equal

$$|\psi_{1,out} - \psi_{1,in}| \ll \psi_{1,out}$$

A non-const- ψ regime is the converse of a const- ψ one

Possible Scenarios of the Taylor Pb.

Hahm & Kulsrud, PoF (1985)

Wang & Bhattacharjee, PoF B (1992)

13/23

Possible Scenarios of the Taylor Pb.

Hahm & Kulsrud, PoF (1985)

Wang & Bhattacharjee, PoF B (1992)

Criteria for the Plasmoid Formation

 From linear theory it is possible to show that the (visco)resistive regime does **not** occur if [Comisso, Grasso, Waelbroeck, PoP (2015) and JPP (2015)]

$$\Psi_0 \gtrsim \Psi_W \,, \quad \Psi_W = B_0 \, \underbrace{\frac{1}{\Delta_s'} \tau_\eta^{-1/3} \left(1 + \frac{\tau_\nu}{\tau_\eta} \right)^{-1/6} \left(\frac{\tau_A}{kL} \right)^{1/3}}_{\Xi_W}$$

where

$$\tau_A = \frac{L}{v_A}, \quad \tau_\eta = \frac{L^2}{\eta}, \quad \tau_\nu = \frac{L^2}{\nu} \qquad \left(S = \frac{\tau_\eta}{\tau_A}, \quad P_m = \frac{\tau_\eta}{\tau_\nu}\right)$$

$$\Delta_s' = \frac{2k}{\sinh(kL)} \qquad \left(\frac{d\psi_1}{dx} \Big|_{0^-}^{0^+} = \Delta_0' \psi_1(0) + \Delta_s' \Psi_0 \right)$$

Criteria for the Plasmoid Formation

 The reconnecting current sheet is sufficiently narrow to undergo the plasmoid instability [Loureiro et al., PoP (2007)] if the amplitude of the perturbation is such that [Comisso et al., PoP (2015) and JPP (2015)]

$$\Psi_0 > \Psi_c$$
, $\Psi_c = B_0 C \frac{kL}{\Delta_s'} \frac{\tau_A}{\tau_\eta} \left(1 + \frac{\tau_\eta}{\tau_\nu} \right)^{1/2}$

where

$$C \sim 2 \epsilon_c^{-2}, \quad \epsilon_c = \frac{\delta_c}{L_c} \ll 1$$

• Numerical simulations (e.g. [Bhattacharjee et al., PoP (2009)]) suggest $\epsilon_c \sim 10^{-2}$

(Also heuristic arguments [Loureiro et al., PRE (2013)] suggest the same critical aspect ratio)

Criteria for the Plasmoid Formation

The plasmoid formation occur when $\ \Psi_0 egin{cases} >\Psi_c \,, & \mbox{if } \Psi_c \gtrsim \Psi_W \ \gtrsim \Psi_W \,, & \mbox{if } \Psi_c < \Psi_W \end{cases}$

[Comisso et al., PoP (2015)]

 $\Psi_W = \text{red dashed line}$ $\Psi_c = \text{blue solid line}$ $S = 10^8, P_m = 10$

• There exists a critical perturbation wavenumber k_* below which the evolution of the system always leads to the plasmoid-dominated regime.

Reconnection Rate in the Plasmoid-dominated regime

- The reconnection rate may be evaluated as the rate of change of the flux reconnected at the main *X*-point.
- In the plasmoid-dominated regime the reconnection process is strongly time dependent, with plasmoids constantly being generated, ejected and merging each others.
- We may assume a statistical steady-state with a marginally stable current sheet located at the main X-point.

Reconnection Rate in the Plasmoid-dominated regime

 In this case, the reconnection rate in statistical steady-state can be evaluated as [Comisso, Grasso, Waelbroeck, PoP (2015)]

$$\partial_t \psi_p \approx \epsilon_c B_0 L(\Delta_s' \Xi_0)^2 \tau_A^{-1} \left(1 + \frac{\tau_\eta}{\tau_\nu} \right)^{-1/2}$$

- The reconnection rate in the plasmoid-dominated regime depends strongly on the external forcing $\Psi_0=B_0\Xi_0$
- The reconnection rate does not depend on $\,S= au_\eta/ au_A\,$
- The reconnection rate decreases with increasing $P_m = au_\eta/ au_
 u$

Reconnection Rate in the Plasmoid-dominated regime

In the small magnetic-Prandtl number limit

$$P_m \ll 1 \quad \Rightarrow \quad \partial_t \psi_p \approx \epsilon_c B_0 L(\Delta_s' \Xi_0)^2 \tau_A^{-1}$$

In the large magnetic-Prandtl number limit

$$P_m \gg 1 \quad \Rightarrow \quad \partial_t \psi_p \approx \epsilon_c B_0 L(\Delta_s' \Xi_0)^2 \tau_A^{-1} \left(\frac{\tau_\eta}{\tau_\nu}\right)^{-1/2}$$

Parameter Space Diagrams

• Possible evolutions of forced reconnection for $\hat{k}=1/8,\ P_m=5$ [Comisso, Grasso, Waelbroeck, JPP (2015)]

- (1) HK scenario [PoF (1985)]
 - -inertial regime
 - -(visco)resistive regime
 - -Rutherford regime
- (2) WB scenario [PoF B (1992)]
 - -inertial regime
 - -Waelbroeck regime
 - -Rutherford regime
- (3) CGW scenario [PoP (2015)]
 - -inertial regime
 - -Waelbroeck regime
 - -Plasmoid-dominated regime

20/23

Parameter Space Diagrams

• Possible evolutions of forced reconnection for $S=10^8,\,\hat{k}=0.5$ [Comisso, Grasso, Waelbroeck, JPP (2015)]

- (1) HK scenario [PoF (1985)]
 - -inertial regime
 - -(visco)resistive regime
 - -Rutherford regime
- (2) WB scenario [PoF B (1992)]
 - -inertial regime
 - -Waelbroeck regime
 - -Rutherford regime
- (3) CGW scenario [PoP (2015)]
 - -inertial regime
 - -Waelbroeck regime
 - -Plasmoid-dominated regime

Parameter Space Diagrams

• Possible evolutions of forced reconnection for $S=10^8,\,P_m=5$ [Comisso, Grasso, Waelbroeck, JPP (2015)]

- (1) HK scenario [PoF (1985)]
 - -inertial regime
 - -(visco)resistive regime
 - -Rutherford regime
- (2) WB scenario [PoF B (1992)]
 - -inertial regime
 - -Waelbroeck regime
 - -Rutherford regime
- (3) CGW scenario [PoP (2015)]
 - -inertial regime
 - -Waelbroeck regime
 - -Plasmoid-dominated regime

Conclusions

- Large magnetic perturbations can give rise to the formation of plasmoids, which are responsible for a substantial speed up of the reconnection process.
- Below a critical perturbation wave-number, there are no stable reconnecting current sheets.
- Since the critical perturbation wave-number increases for decreasing values of the plasma resistivity and viscosity, also modest perturbation amplitudes can lead to plasmoid-dominated reconnection in large tokamaks.
- In the plasmoid-dominated regime the reconnection rate is independent of the Lundquist number, but it depends on the magnetic Prandtl number.
- It is likely that also two-fluid/kinetic effects should be considered in large tokamaks.