

Shocks in astrophysics and laser-plasma interactions

Anne Stockem Novo

Theor. space and astrophysics Ruhr-University Bochum Germany

Overview

Introduction Shocks and their applications Key quantities

Electromagnetic shocks (EM)

Weibel instability and diffusive shock acceleration e-i+ vs. e-e+ plasmas

Electrostatic shocks (ES)

Shock reflection Electromagnetic modes in ES ES in the laboratory

Conclusions

RUE

Bullet in water as example for a shock

blogs.scientificamerican.com

Cosmic rays accelerated in shocks

Cosmic rays

- ▶ 90% protons (H⁺)
- ▶ 9% alpha
- ► 1% heavier nuclei

Efficient particle acceleration in shocks!

Scattering in the shock front

Diffusive shock acceleration

- Energy gain per crossing:
 - $\frac{\Delta E}{E} \propto \frac{v}{c}$
- Power-law distribution:

$$\frac{dN(E)}{dE} \propto E^{-p}$$

Shock ignition in inertial confinement fusion

Compression and hot spot formation in separate stages → Better control over instabilities

Atzeni et al. (2015) PPCF 57 014022

Fast ions for cancer therapy

www.klinikum.uni-heidelberg.de

www.eli-beams.eu

OSIRIS 2.0

osiris framework

- Massively Parallel, Fully Relativistic Particle-in-Cell (PIC) Code
- Visualization and Data Analysis Infrastructure
- Developed by the osiris.consortium \Rightarrow UCLA + IST

Ricardo Fonseca: ricardo.fonseca@ist.utl.pt Frank Tsung: tsung@physics.ucla.edu

http://cfp.ist.utl.pt/golp/epp/ http://exodus.physics.ucla.edu/

New Features in v2.0

- Bessel Beams
 - Binary Collision Module
- Tunnel (ADK) and Impact Ionization
- Dynamic Load Balancing
- PML absorbing BC
- Optimized higher order splines
- Parallel I/O (HDF5)
- Boosted frame in 1/2/3D

Collisionless shocks

RUB

Time = 143.94 [1 / ω_p]

Collisionless shocks

Time = $137.94 [1 / \omega_p]$

Overview

Introduction

Shocks and their applications Key quantities

Electromagnetic shocks (EM)

Weibel instability and diffusive shock acceleration e-i+ vs. e-e+ plasmas

Electrostatic shocks (ES)

Shock reflection Electromagnetic modes in ES ES in the laboratory

Conclusions

RU

Hydrodynamic equations for steady state

Jump conditions in simulation frame

$$\beta_s = (\Gamma_{ad} - 1) \sqrt{\frac{\gamma_0 - 1}{\gamma_0 + 1}}$$

Blandford & McKee (1976)

 $\frac{n_2}{n_1} = \frac{\Gamma_{ad}}{\Gamma_{ad} - 1} + \frac{1}{\gamma_0(\Gamma_{ad} - 1)}$

Simulation setup for a collisionless shock

 e^{-} and e^{+} , i^{+} : $m_i/m_e \geq 1$

Non-relativistic or relativistic beams: v_0 , γ_0

Hot or cold beams: $k_B T_e/m_e c^2$

Bret, Stockem et al., PoP (2013)

Electrostatic vs. electromagnetic

RUB

Electromagnetic shocks in lab and astro

Shock front transition mediated by (electro) magnetic field

Formation time scales on 100s ω_{pi}^{-1}

Electrostatic shocks in the laboratory

Shock front transition mediated by electrostatic field

Formation time scales on 10s ω_{pi}^{-1}

Different formation mechanisms in EM and ES

- Density compression ~ 3
- Filaments
- Driven by Weibel/filamentation instability

- Density compression ≥ 2
- Oscillatory structure
- Driven by longitudinal modes

Overview

Introduction

Shocks and their applications Key quantities

Electromagnetic shocks (EM)

Weibel instability and diffusive shock acceleration e-i+ vs. e-e+ plasmas

Electrostatic shocks (ES)

Shock reflection Electromagnetic modes in ES ES in the laboratory

Conclusions

RUE

Turbulent scattering increases energy

Filamentation instability generates B₃

Growth rate of cold filamentation $\frac{\delta}{\omega_p} = \sqrt{\frac{2}{\gamma_0}}\beta_0$ Exponential field growth: $\tau_s = \frac{1}{2\delta} \ln \left| \frac{B_f^2}{B_i^2} \right|$ J. B Physical mechanism of the Weibel instability. $\tau_s \omega_p = \frac{\sqrt{\gamma_0}}{2\sqrt{2}} \ln \left[4 \times 10^2 \sqrt{\frac{\pi}{3}} \frac{\mu}{\gamma_0} N \right]$ $\mu = \frac{m_e c^2}{k_B T}$

 $\gamma_0 = 25: \tau_s \omega_{pe} = 40$

Bret, Stockem et al., PoP (2013)

Anne Stockem Novo, RUB

Density is accumulated: a shock is formed

Quasi-steady shock: Density jump condition fulfilled

$$\frac{n_2}{n_1} = \frac{\Gamma_{ad}}{\Gamma_{ad} - 1} + \frac{1}{\gamma_0(\Gamma_{ad} - 1)}$$

Shock formation time:

$$\tau_{sf} = \begin{cases} 2\tau_s & (2D) \\ 3\tau_s & (3D) \end{cases}$$

Bret, Stockem et al., PoP (2014)

RUB

Formation of quasi-steady state

Bret, Stockem et al., PoP (2014)

Overview

Introduction

Shocks and their applications Key quantities

Electromagnetic shocks (EM)

Weibel instability and diffusive shock acceleration e⁻i⁺ vs. e⁻e⁺ plasmas

Electrostatic shocks (ES)

Shock reflection Electromagnetic modes in ES ES in the laboratory

Conclusions

RU

Quasi-steady shock formation takes longer

Smaller turbulence scales in e-i shocks

Smaller turbulence scales in e-i shocks

Stockem Novo et al., ApJL (2015)

RUB

Shock formation in e-i-plasmas takes longer

Shock formation time in electron-ion shocks is increased by **factor 3**

$$\tau_{sf,i} = 3\sqrt{m_i/m_e}\tau_{sf,e}$$

Overview

Introduction

Shocks and their applications Key quantities

Electromagnetic shocks (EM)

Weibel instability and diffusive shock acceleration e-i+ vs. e-e+ plasmas

Electrostatic shocks (ES)

Shock reflection Electromagnetic modes in ES ES in the laboratory

Conclusions

RUE

Electrostatic shock (ES) formation

RUB

Electrostatic shock (ES) formation

RUB

lons are reflected at the shock front

Shock reflection: Ion velocity in ion rest frame

$$v_i \approx 2v_{sh}$$

Overview

Introduction

Shocks and their applications Key quantities

Electromagnetic shocks (EM)

Weibel instability and diffusive shock acceleration e-i+ vs. e-e+ plasmas

Electrostatic shocks (ES)

Shock reflection Electromagnetic modes in ES ES in the laboratory

Conclusions

RU

Electrostatic shocks in a symmetric setup

Does new distribution function go Weibel unstable? → electromagnetic modes

Electron distribution

Sagdeev (1966) model Shock formation condition:

$$1 < M_{max} \lesssim 3.1$$

$$1 < v_0 \sqrt{\frac{m_i c^2}{k_B T_e}} \lesssim 3.1$$

Electron distribution: (e.g. Schamel, JPP 1972) $f_e = n_0 e^{-\frac{\mu}{2}(\beta_y^2 + \beta_z^2)} \begin{cases} \exp\{-\frac{\mu}{2}(\sqrt{\beta_x^2 - 2\varphi} + \beta_0)^2\} & \beta_x < -\sqrt{2\varphi} \\ \exp\{-\frac{\mu}{2}\beta_0^2\} & |\beta_x| \le \sqrt{2\varphi} \\ \exp\{-\frac{\mu}{2}(\sqrt{\beta_x^2 - 2\varphi} - \beta_0)^2\} & \beta_x > \sqrt{2\varphi} \end{cases}$

Electromagnetic modes in ES shock

Dispersion relation of EM waves in plasma:

 $k^{2}c^{2} - \omega^{2} - \omega_{pe}^{2}(U+V) = 0$

with

$$U = \int_{-\infty}^{\infty} d^3 u \frac{u_x}{\gamma} \frac{\partial f_e}{\partial u_x}$$

$$V = \int_{-\infty}^{\infty} d^3 u \frac{u_x^2}{\gamma \left(\gamma \frac{\omega}{kc} - u_z\right)} \frac{\partial f_e}{\partial u_z}$$

Electromagnetic modes in ES shock

Nonrelativistic approximation of the growth rate:

$$\sigma(k) \approx \sqrt{\frac{2}{\mu\pi}} kc \left[1 - \frac{k^2 c^2 + \omega_{pe}^2}{\omega_{pe}^2 V(\varphi)} \right]$$

$$\mu = \frac{m_e c^2}{k_B T_e}$$
$$V(\varphi) = n_0 \left\{ e^{\mu \varphi} \operatorname{erfc} \sqrt{\mu \varphi} + 2\sqrt{\frac{\mu \varphi}{\pi}} + \frac{4}{3} \sqrt{\frac{\mu^3 \varphi^3}{\pi}} e^{-\mu \beta_0^2/2} \right\}$$

Comparison of time scales

I) Inverse shock formation time scale:

$$\sigma_{ES,ii} = \frac{1}{2\gamma_0^{3/2}}\omega_{pi}$$

2) Electromagnetic ion-ion filamentation instability

 $\sigma_{EM,ii} = \beta_0 \sqrt{\frac{2}{\gamma_0}} \omega_{pi}$ Not important for v₀ < c/3

3) Electromagnetic modes in electrostatic shock

$$\sigma_{EM,ee} \approx \sqrt{\frac{1}{\pi\mu}} \frac{\omega_{pe}}{V(\varphi)} \left(\frac{2}{3}(V(\varphi)-1)\right)^{3/2}$$

ES/EM dominated regimes can be defined

A. Stockem et al., Sci. Rep. 4, 3934 (2014)

Ion spectra are fundamentally different

ES: lons experience single reflection from shock front

EM: Multiple scatterings in shock front region

ES: Highest ion energies, narrower spectrum

EM:Wider spectrum, lowest energies

ES/EM: Transition between both cases

A. Stockem et al., Sci. Rep. 4, 3934 (2014)

Anne Stockem Novo, RUB

Overview

Introduction

Shocks and their applications Key quantities

Electromagnetic shocks (EM)

Weibel instability and diffusive shock acceleration e-i+ vs. e-e+ plasmas

Electrostatic shocks (ES)

Shock reflection Electromagnetic modes in ES ES in the laboratory

Conclusions

RU

Target-normal-sheath acceleration

www.oncoray.de

Shock experiments in the laboratory

Laser intensity vs. proton energy:

200 MeV protons for $a_0 \approx 10$

D. Haberberger et al., Nature (2012)

Anne Stockem Novo, RUB

Overdense plasma target

Dispersion relation of EM wave

$$\omega_0^2=\omega_p^2+c^2k^2$$

Critical density

Wave propagation up to

$$n < n_{cr} = \omega_0^2 \frac{\gamma m_e}{4\pi e^2}$$

with relativistic factor

$$\gamma = \sqrt{1 + a_0^2}$$

and normalised laser intensity

$$a_0 = rac{eA_0}{m_ec^2}$$

RUB

Collisionless shock acceleration

Shock condition: $v_e > c_s = \sqrt{\frac{k_B T_e}{m_i}}$

Shock velocity:

$$\frac{v_{sh}}{c} = a_0 \sqrt{\frac{m_e n_{cr}}{8m_p n_e}} \left(1 + \Gamma_{ad}\right)$$

Proton energy:

$$E_{p,S} \approx 1.8 m_e c^2 a_0^2 \frac{n_{cr}}{n_e}$$
$$= 1.8 a_0 \frac{n_{cr}}{n_e} E_{p,T}$$

RUB

3D simulation of a full experiment

Target:

Frozen H₂ $n_e = 0.1-4 \times n_{crit}$ $d = 15-25 \ \mu m$ $\rho = 0.086 \ g/cm^3$ $n_{H2} = 2.6 \times 10^{22} \ cm^{-2}$ $N_p = 4.2 \times 10^{14}$

Laser parameters:

 $\lambda_0 = 1.03 \ \mu m$ $a_0 = 10-12$ $F_0 = 8-9 \ \mu m^2 \rightarrow w_0 = 3.5 \ \mu m$ $\tau_0 = 150-170 \ fs$ $I_0 = 1.3 \times 10^{20} \ W/cm^2$

Protons are shock-accelerated to 10 MeV

 $n_0 / n_{cr} = I$

3D experiments necessary for quantitative results! PW laser systems required for 200 MeV RUB

Conclusions

RUB

EM/ES shock formation and particle acceleration show different features

ES shocks in the laboratory

Increasing laser intensity: new regime of mixed modes

Parameter choice critical for beam quality

3D simulations for quantitative analysis

