

Self-consistent interaction between MHD island and turbulence

M. Muraglia¹, O. Agullo¹, A. Poyé², S. Benkadda¹, N. Dubuit¹, X. Garbet³, A. Sen⁴

- 1. Aix-Marseille University, PIIM Laboratory, UMR 7345 LIA 336 CNRS, Marseille, France
- 2. Laboratoire de physique, ENS Lyon, CNRS & Universitéde Lyon, 69364 Lyon, France
- 3. IRFM, CEA, 13108, St-Paul-Lez-Durance, France
- 4. Institute for Plasma Research, Bhat, Gandhinagar 382428, India

Context

- Growth of Neoclassical Tearing Modes (NTMs): magnetic island degrading the plasma pressure and sometimes causing disruption
- Behavior of NTMs: modified Rutherford equation

[R.J. La Haye, POP 13 (2006)]

- ♦ NTMs precursors :
 - ♦ Sawtooth oscillations
 - → Fishbones instabilities
 - →Edge localized modes
 - **♦...?**
- In JT-60U, 80% of high β discharges, a (2/1) NTM appears without precursor event [A. Isayama et al, PFR 8 (2013)]

Open question: origin of seed island?

Context

- ◆ Interchange like instabilities coexist with macro MHD instabilities and lead to micro-turbulence in fusion devices.
- ◆ The interaction of magnetic island with interchange is a multi-scales problem.

```
[F. Militello et al, POP 15 (2008)]

[F.L. Waelbroeck et al, PPCF 51 (2009)]

[M. Muraglia et al, PRL 103 (2009)]

[A. Ishizawa et al, POP 17 (2010)]

[F. Hariri et al, PPCF 57 (2015)]
```

Previous result :

Turbulence Driven Magnetic Island (TDMI)

```
[M. Muraglia et al, PRL 107 (2011)]
[A. Poyé et al, POP 22 (2015)]
[A. Ishizawa et al, POP 17 (2010)]
[W. Hornsby et al, 42<sup>nd</sup> EPS conference, Lisbon (2015)]
```

Questions: Can turbulence be at the origin of a NTM?

Outline

- I. Introduction (fluid model and numerical tool)
- II. « Classical » NTM wo turbulence in a 2D slab geometry (no turbulence)
- III. Turbulence Driven Magnetic Island (TDMI) in a 2D slab geometry (seeding regime) (with and wo bootstrap current)
- IV. Nonlinear growth of NTM from a TDMI (amplification regime)
- V. Conclusions

I. Model: Reduced MHD

- ♦ Reduced MHD equations for electrostatic potential ϕ , pressure p and magnetic flux ψ .
- Model includes both resistive Interchange and Tearing Mode in a 2D slab geometry:

$$\partial_{t}\nabla_{\perp}^{2}\phi + [\phi, \nabla_{\perp}^{2}\phi] = [\psi, \nabla_{\perp}^{2}\psi] - \kappa_{1}\partial_{y}P + \nu\nabla_{\perp}^{4}\phi$$

$$\partial_{t}P + [\phi, P] = -\nu_{\star}((1 - \kappa_{2})\partial_{y}\phi + \kappa_{2}\partial_{y}P) + \rho_{\star}^{2}[\psi, \nabla_{\perp}^{2}\psi] + \chi_{\perp}\nabla_{\perp}^{2}P$$

$$\partial_{t}\psi + [\phi - P, \psi] = -\nu_{\star}\partial_{y}\psi + \eta\nabla_{\perp}^{2}\psi + \eta C_{b}\partial_{x}p$$

Instability characterization : THE PARITY

[M. Muraglia et al, NF 49, 055016 (2009)]

I. Numerical tool: AMON code

♦ Semi-spectral code :

Radial direction: finite difference

Nx = 1025

Poloidal and axial (for 3D) directions : spectral

Ny = 256

◆ Temporal scheme :

Runge-Kutta 4

♦ Boundary conditions :

Radial direction: 0 at the boundaries

Poloidal and axial directions : periodic

♦ Nonlinear terms:

Quadratic terms conservation

I. Numerical tool: Performances code

◆ 1024*512, 2D simulations with 2 fields, 500000 iterations on Nestor (8 procs/node):

◆ 256*256*128, 3D simulations with 3 fields, 500000 iterations on Juelich (8 procs/node):

II. NL growth of NTMs wo turbulence

$\Delta' = -0.45 - no turbulence$

• For a NTM to grow, Bootstrap current should be strong enough for a given value of $\psi_1(r_s, t=0)$

[F. Militello et al, POP 15 (2008)]

- Recover the Rutherford behavior
- ◆ From a seed island, a NTM grows and flattens the pressure decreasing back the bootstrap current effect : the island size saturates

II. NL growth of NTMs without turbulence

$$\Delta$$
' = -0.45 – no turbulence

- Nonlinear growth of a large island => NTM
- ◆ Flattening pressure [R. Fitzpatrick POP 2, 3 (1995)]

Linear Spectrum

Δ'<0 Linear spectrum is stable
 with respect with tearing instability

=> No island

- Stable large scales modes
- Small scales turbulence driven
 by interchange instability
- Bootstrap current has a week effect on the linear spectrum
- => What 's about non-linear dynamics ?

◆ NL generation of TDMI by a beating of interchange modes

[M. Muraglia et al, PRL 107 (2011)] & [A. Poyé et al, POP 22 (2015)] [W. Hornsby et al, 42nd EPS conference, Lisbon (2015)]

NL generation of TDMI by a beating of interchange modes

[M. Muraglia et al, PRL 107 (2011)] & [A. Poyé et al, POP 22 (2015)] [W. Hornsby et al, 42nd EPS conference, Lisbon (2015)]

III. NL amplification of TDMI by bootstrap current

- Self-consistent generation of NTM from TDMI
 - 1. TDMI formation => Seeding regime
 - 2. NL growth of NTM => Amplification (by bootstrap current) regime 10

=> Weak impact of the BC during the quasi-linear regime i. e., during the TDMI formation

=> TDMI formation due to NL beating of interchange modes

=> TDMI formation due to NL beating of interchange modes

- Sym. breaking: large scale modes switch from interchange to tearing structure
- lacktriangle All the non linearities of the model satisfy $[\mathsf{Int}_{ss},\mathsf{Int}_{ss}] o \mathsf{Tear}_{ls}$

- Without Bootstrap current, island is generated by NL beating and saturates.
- With Bootstrap current, island dynamics presents two regimes :
 - 1. island is NL generated by interchange modes
 - 2. island is amplified by the current Bootstrap

- Bipolar structure of the electrostatic potential
- Partial pressure flattening

 \bullet NL simulations are performing with different turbulence levels Da = (γ^*/m^{*2})

15

◆ Large scale modes are stable while small scales modes are unstable and present an interchange parity

=>Turbulence level controls both the seed island size and the saturated island

IV. Impact of the resistivity?

Recipe for an island:

- 1. Non ideal and local phenomenom to violate the frozen flux condition
 - => modification of the magnetic field line topology allowed

```
« Classical » Tearing : resistivity η
```

Turbulent Driven NTM: bootstrap current?

2. Free energy to let the islang grows

```
« Classical Tearing » : equilibrium magnetic field \gamma_{island} = f(\Delta' > 0)
```

Turbulent Driven NTM : NL beating of interchange modes $\gamma_{island} = f(\gamma^*)$

=> Turbulence driven NTM mechanism is consistent with weak collisions plasmas (to be check...)

V. Conclusions

- ◆ A basic RMHD model has been used to investigate the interaction between **small scale interchange turbulence** and **magnetic islands** when tearing instability is marginally stable.
- ◆ NTM can be generated thanks to turbulence. The dynamics of a such turbulent driven NTM can be decompsed into 2 regimes :
 - 1. TDMI is genrated due to an interchange modes beating, bootstrap current has a weak impact on that regime (seeding regime).
 - 2. Bootstrap current amplifies TDMI => NL growth of NTM
- ◆ Impact of the turbulence level on NTM dynamics : Turbulence level controls the seed island size and the saturated island size

Futur work:

- Focus on regimes with high turbulence level to investigate the saturated mechanism and study the impact on the pressure profile of a large turbulence driven NTM.
 - Investigate regimes with weak resistivity.