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Outline

MOTIVATION

Undamped flows in optimized stellarators: quasisymmetry (QS).

Why we will focus on approximate QS.

AND THEN . . .

Part I: When can a stellarator be considered quasisymmetric (QS) in
practice?

Formal criterion for ‘closeness to quasisymmetry’.

Part II: What is the size of the radial region in which the criterion
can be satisfied?
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Particle trajectories in a tokamak and in a stellarator

vM,s =
v2
||

Ωs
b̂× (b̂ · ∇b̂) +

v2
⊥

2BΩs
b̂×∇B, vψ,s := vM,s · ∇ψ,

where Ωs is the gyrofrequency of species s and ψ the toroidal flux.

In tokamaks, trapped particles are well confined: the radial magnetic
drift averaged over the orbit, vψ,s, vanishes.
In general, in a stellarator, vψ,s 6= 0 and trapped particles drift away.
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Optimized stellarators: omnigeneity and quasisymmetry

A stellarator is called omnigeneous if vψ,s = 0. [Cary and Shasharina
(1997), Parra et al. (2015)].

Flows are generally damped in an omnigeneous stellarator.

A stellarator that possesses a direction in which flows are undamped
is called quasisymmetric [Helander and Simakov (2008)].

Quasisymmetry implies omnigeneity.
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In a QS stellarator, there exist privileged
sets of coordinates {ψ,Θ, ζ}, where Θ
is a poloidal angle and ζ is a toroidal
angle, such that |B(ψ,Θ, ζ)| has a sym-
metry direction as shown in the figure.
They are called Boozer coordinates.
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Why study QS stellarators

The outer region of a stellarator plasma is dominated by turbulence.
See, for example, [Dinklage et al. (2013)].

Flow shear reduces turbulence.

It seems reasonable to investigate configurations that admit large
flows (i.e. such that flows are undamped) as a route to achieve large
flow shear.

However, it only makes sense to consider stellarators close to
quasisymmetry. . .

Exact quasisymmetry cannot be achieved throughout the entire plasma
volume [Garren and Boozer (1991); expansion around the magnetic
axis].

Can we quantify closeness to quasisymmetry? When is flow
damping sufficiently small?
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Part I: When can a stellarator be considered QS in
practice?

Take a divergenceless vector field of the form Y = B−1b̂×∇ψ + hB.

Total flow damping in the direction Y:〈
(∇ · πi) ·Y

〉
ψ

= −1

c

〈
Jn · ∇ψ

〉
ψ

+
〈

(∇ · πgy,i) ·Y
〉
ψ
,

where πi is the viscosity tensor, 〈Jn · ∇ψ〉ψ is the neoclassical radial
electric current density and πgy,i is the gyroviscosity.

c−1〈Jn · ∇ψ〉ψ ∼ ρ2
∗ic
−1enivti|∇ψ| is the largest term in a generic

stellarator.〈
(∇·πgy,i) ·Y

〉
ψ
∼ ρ3

∗ic
−1enivti|∇ψ| includes turbulent and higher-

order neoclassical contributions.

Here, c is the speed of light, e is the proton charge, vti is the ion thermal
speed, ni is the ion density, and ρ∗i is the ion Larmor radius over the
major radius, R0.
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Part I: When can a stellarator be considered QS in
practice?〈

(∇ · πi) ·Y
〉
ψ

=
[
ρ2
∗iAnc + ρ3

∗iAgy

]
c−1enivti|∇ψ|+ . . .

Anc and Agy are O(1), generically.

Anc ≡ 0 if and only if the stellarator is quasisymmetric.

The idea: Take B = B0 + αB1, where B0 is quasisymmetric and
0 < α� 1.

We expect Anc ∼ αqνr∗iAnc, with Anc = O(1) and ν∗i the ion colli-
sionality.
Compare ρ2∗iα

qνr∗i with ρ3∗i to obtain the criterion.

The stellarator can be considered quasisymmetric in practice if

α� (ρ∗iν
−r
∗i )1/q.

The scalings depend on the collisionality regime (obvious) and on the
size of the gradients of B1 (not so obvious).
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Perturbations with small gradients [Calvo, Parra, Velasco
and Alonso (2013)]

B = B0 +αB1, where αB1 is a small deviation from quasisymmetry.

If
|α∂ΘB1|/|∂ΘB0| ∼ α and |α∂ζB1|/|∂ζB0| ∼ α,

then the drift-kinetic equation and 〈Jn·∇ψ〉ψ can be Taylor expanded,
and it can be proven that〈

(∇ · πi) ·Y
〉
ψ

=
[
ρ2
∗iα

2 Ânc + ρ3
∗iAgy

]
c−1enivti|∇ψ|+ . . . .

True for any collisionality regime but, of course, the size of Ânc de-
pends on ν∗i. In the 1/ν regime we obtain the criterion

α� √ν∗iρ∗i

for closeness to quasisymmetry.
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Perturbations with large gradients [Calvo, Parra, Alonso
and Velasco (2014)]

If |α∂ΘB1|/|∂ΘB0| ∼ 1 or |α∂ζB1|/|∂ζB0| ∼ 1, then a simple Taylor
expansion does not work.

We have solved the 1/ν regime. Typical passing and trapped (both
in large wells and ripple wells) particles are collisionless.
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Perturbations with large gradients: 1/ν regime

The drift-kinetic equation must be solved in each of the regions num-
bered in the figure, and the solutions have to be matched.

In contrast to the common perception, the neoclassical fluxes and
therefore the neoclassical damping are not dominated by ripple
wells.
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Region II, particles trapped in large wells, dominate
neoclassical transport for ν∗i � 1

The key result is the determination of the scaling of the
orbit-averaged radial magnetic drift, vψ,i.

The region of the orbit in a neighborhood of the bounce points is
responsible for the result vψ,i ∼ α1/2ρ∗ivti|∇ψ|. Relatively technical
calculation [Calvo et al. (2014)].

The non-adiabatic piece of the distribution function in this region
scales as GII

i ∼ α1/2ν−1
∗i ρ∗iniv

−3
ti , and large wells contribute to the

damping as

〈Jn · ∇ψ〉ψ ∼
α

ν∗i
ρ2
∗inivti|∇ψ|.

The criterion for closeness to quasisymmetry is, in this case,

α� ν∗iρ∗i.

Compare with the less demanding criterion obtained for perturbations
with small gradients, α� √ν∗iρ∗i.
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Part II: What is the size of the radial region in which the
criterion for closeness to QS can be satisfied?

We have to understand the relation between magnetohydrodynamic
(MHD) equilibrium equations and the QS condition.

This is done in the basic reference [Garren and Boozer (1991)], relying
on an expansion around the magnetic axis.

MHD EQUILIBRIUM AROUND A SURFACE Sr0 FAR FROM
THE MAGNETIC AXIS

Data that are needed on Sr0 to determine B around Sr0?

Here, r :=
√
ψ/Baxis, where Baxis is the average of B on axis.

We have developed a method (not explained in detail here)
to compute local MHD equilibria in arbitrary flux coordinates
{r, u, v}, where u and v are poloidal and toroidal angles.

In [Hegna (2000)], the problem is addressed in Boozer coordinates.
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Local stellarator MHD equilibria

If B · ∇r = 0 and (∇×B) · ∇r = 0, then

B = It(r)∇Sru+ Ip(r)∇Srv +∇Srχ

where ∇Sr denotes the projection of the gradient on Sr. The potential
χ(r, u, v) depends on the choice of coordinates.

Using ∇ ·B = 0 and the MHD equilibrium equations, one can prove that

Knowledge of x(r0, u, v) (i.e. the shape of Sr0) and two numbers (say,
It(r0) and Ip(r0)) determines B on Sr0 .

Knowledge of x(r0, u, v) and two flux functions (say, It(r) and Ip(r)) de-
termines B on Sr0+δr and, by integration, in the whole stellarator.

Note that, out of the three functions of u and v within x(r0, u, v), two
of them correspond to reparameterizations on Sr0 . The real freedom
amounts to only one function of u and v.

Iván Calvo, CIEMAT, Madrid Quasisymmetry far from the magnetic axis 13



Local stellarator MHD equilibria

If B · ∇r = 0 and (∇×B) · ∇r = 0, then

B = It(r)∇Sru+ Ip(r)∇Srv +∇Srχ

where ∇Sr denotes the projection of the gradient on Sr. The potential
χ(r, u, v) depends on the choice of coordinates.

Using ∇ ·B = 0 and the MHD equilibrium equations, one can prove that

Knowledge of x(r0, u, v) (i.e. the shape of Sr0) and two numbers (say,
It(r0) and Ip(r0)) determines B on Sr0 .

Knowledge of x(r0, u, v) and two flux functions (say, It(r) and Ip(r)) de-
termines B on Sr0+δr and, by integration, in the whole stellarator.

Note that, out of the three functions of u and v within x(r0, u, v), two
of them correspond to reparameterizations on Sr0 . The real freedom
amounts to only one function of u and v.

Iván Calvo, CIEMAT, Madrid Quasisymmetry far from the magnetic axis 13



Exact QS on Sr0 is possible

Coordinate-free QS condition. A stellarator is QS if and only if

(B×∇r) · ∇B = F (r)B · ∇B

for some flux function F (r).

Geometrically, a stellarator is QS if there exists F (r) such that the vector field
VF := B×∇r − F (r)B has closed integral curves and such that B is constant
along them; i.e.

VF · ∇B = 0.

Express the QS condition in terms of x(r0, u, v) by employing that

B2 =
(It + ∂uχ)2|∂vx|2

|∂ux× ∂vx|2
+

(Ip + ∂vχ)2|∂ux|2

|∂ux× ∂vx|2
− 2(It + ∂uχ)(Ip + ∂vχ)

∂ux · ∂vx
|∂ux× ∂vx|2

,

etc.

The QS condition provides an additional equation that fixes the function

of u and v that remained free after imposing MHD equilibrium.
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Deviation from quasisymmetry around Sr0
Since we have no more freedom after making Sr0 exactly QS, B
around Sr0 is found from the local equilibrium relations.

Schematically,

x(r0 + δr, u, v) = x(r0, u, v) + ∂rx(r0, u, v)δr + . . .

Typically, within a radial distance δr from Sr0 , deviations from QS of
size

α ∼ δr/a
are generated. Here, a is the minor radius. Recalling the most favor-
able criterion for closeness to QS (small gradients and ν∗ ∼ 1),

α� ρ
1/2
∗i ,

we estimate that the stellarator can be QS in practice in a region

δr/a� ρ
1/2
∗i .

This looks like a quite negative result. . .
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This negative result seems to be consistent when we look
at the configuration of relatively compact stellarators

QPS has an aspect ratio ε−1 := R0/a ≈ 2.7.
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Here, α̃ := α/ε(r) is the suitable quantity to measure deviations from
QS when ε(r) := r/R0 � 1.
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But things work better for large aspect ratio stellarators

It is possible to achieve α̃� 1 in a considerable radial region.
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NCSX, ε−1 := R0/a ≈ 4.6.

HSX, ε−1 := R0/a ≈ 10.

We understand this only par-
tially.

Starting with an exactly QS magnetic axis, [Garren and Boozer (1991)]
proved that ε(r) << 1 allowed QS in its neighborhood to high accuracy.

Our objective was to make a generic surface Sr0 exactly QS, and estimate
deviations from QS around it.

For ε ∼ 1, we understand the problem. For ε� 1, work to be done.
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