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A Prototypical Kinetic Problem

Plasma near Maxwellian equilibrium:  f = Fy + 40 f
Strong (uniform) magnetic field: w<K )y, by <ky
Electrostaticc:  0E = —V@, B =0
Long wavelength: kipi €1

Y
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The Plasma Turbulence Problem

Energy injected into perturbations can be thermalised:

EITHER by phase mixing (=L.andau damping), producing fine scales in v
and thus making ('[g] finite even if the collisionality is small:

, 0%g . 0y (1/ ) 1/2
o
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dg
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phase turbulent
mixing mixing

AND/OR by turbulent mixing, producing fine scales in real space,
eventually accessing vatious dissipation mechanisms at k1 p; < 1

~J

(which are an interesting but separate story, for another talk)

So what does the system choose to do?



The Plasma Turbulence Problem

“Idle” theory questions:

» Which thermalisation route does the system favour?

» Therefore, what is the structure of turbulence at scales between

injection and dissipation (in phase space, so @, g vs. k k|, v )

‘Which here is the “+”
and which is the “-’?’

“Pragmatic” modeling questions:

» At what rate is the injected energy removed to small scales? .-‘AI\M\\F 'y

» Therefore, what is the typical amplitude of the fluctuations? '

(get that by balancing injection rate with removal rate) »

» Therefore, what is the typical “turbulent diffusivity” relaxing large-scale gradients?

D']' ~ (lli >T(‘.

amplitude  correlation time



Free Energy

“Energy” in o f kinetics is in fact the free energy of the fluctuations:

F=- Z T.68, =
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where 11 / dvy .)(2- + ;_ - is conserved by our equations
: (0 48
dg ,
3’ + v V(g +pFo) +uL-Vig=Clgl+x
Zegp / ] ZT,
p = =a [ dvyg, a=
¥ Ti ‘ 19 Ti
1W X C
aw _ / e N / g (9Clgl)
dt : Fy Fy
T T
injection dissipation
(instabilities, (collisions)
forcing...)

()f )
21?()5

Kruskal & Oberman 1958

Bernstein 1958

Fowler 1963, 68

Krommes & Hu 1994

Krommes 1999

Sugama et al. 1996

Hallatschek 2004

Howes et al. 2006

Candy & Waltz 2006

Schekochihin et al. 2007-09

Scott 2010

Banon, Teaca, Hatch, Morel,
Jenko et al. 2011-14

Plunk et al 2012

Abel et al. 2013

Kunz et al. 2015

=n; ;W



Landau Damping = Phase Mixing

[Landau damping/phase mixing is the transfer of free energy from ¢ to g

via refinement of velocity-space structure of the perturbed distribution
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Life in Hermite Space
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Life in Hermite Space

X v Op
v - - i .
ot o TRV vth 2L, P Oy Standard “fluid”
ITG equations
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From =3 on, the equations are universal:

(3

advected by the same

u| =

+ug - V_L) gm T+ 'Ut,hvﬂ
|

all moments are

velocity

Pilth . .
5 ZX Vi

higher moments couple to lower ones,
so even though free energy is injected

m+ 1 m
T gm+1 T 5 9m—-1 | = —VMgm
| |

]
at large enough 7,
free energy
is removed

by collisions

at low 7z, 1t gets to large

NB: we use the LB operator
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Life in Hermite Space

0 U v Op

dta | ven V| va 2L, oy Standard “fluid”
ITG equations
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The free energy is (via Parseval’s theorem for H,,,’s)
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Life in Hermite Space

0 U v 0
z¥ + v V) L= i L A 19
ot o Uth 2L, Oy Standard “fluid
ITG equations
0 u 1 §T|| l+a (e.g., Cowley et al. 1992)
< 2 v, (= =0 :
(Bt T ) Vth T UV 2 T + a ¥

(% % + vV %) _ _;z;pig(;

The free energy is (via Parseval’s theorem for H,,,’s)

Landau damping/phase mixing is the transfer of free energy
f\ From low moments (g, u, 0T)) into higher ones (gm=>3).
1 (5T“2 (uﬁ l+a

T2t T 5 (¥0)
= 2 4 T? vd 20:2

Turbulence (in the usual sense) is the mixing of @, u, 6T}
by u; transferring their energy to small scales (large k).



“Fluid” Turbulence Theory

0 U v 0

Bt a va 2L, oy Standard “fluid”
ITG equations

0 U 1 5T|| l+a (e.g., Cowley et al. 1992)
il 1 X - =0 ’

(Bt + o VI (2 T " a ‘p)
0 0T, U veh  Op

(& T +”‘hv“z@’}2ﬂ) T TaLr oy

Let us construct a turbulence theory for ITG 1gnoring coupling to phase space...

W= +Z T2 +v2 -’_2&2((’0>

1=3 th

Turbulence (in the usual sense) is the mixing of @, u, 6T,
by u; transferring their energy to small scales (large k).

[Barnes, Parra & AAS PRL 107, 115003 (2011)]



“Fluid” Turbulence Theory: Outer Scale

0 (7! v 0
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Let us construct a turbulence theory for ITG 1gnoring coupling to phase space...

W here is energy injected?

. Uth
» “Linear balance”: kjlovin ~ wer = kyopi — T > kiopi ~ —
T

(for ITG 1njection to work)

> L ible scale: k 1 ( L )
aroest possiple scale: n~ |— = —
gest p I L R

» Isotropy: kzo ~ k‘yo ~ k1o

( ka:(] ~ SZFkyOTc ~ kyO if SZF ~ Tc—l >
~onal ﬂ(;[w shear [Barnes, Parra & AAS PRL 107, 115003 (2011)]



“Fluid” Turbulence Theory: Outer Scale

0 - ven Oy
vth || - p‘l 141 10
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0 U l+a (e.g., Cowley et al. 1992)
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Let us construct a turbulence theory for ITG 1gnoring coupling to phase space...

At what rate is energy removed from this scale?

Uth kL ops ~ Ly
wer ~ k1opi— ~ kiouro ~ piumk? 9o Lopi
Lt Ly
o nonlinear removal to smaller
injection scales, ki > kg > Dy ~ piL
2
{ | L2
Yo ~
kioLr

[Barnes, Parra & AAS PRL 107, 115003 (2011)]



“Fluid” Turbulence Theory: Outer Scale

0 - ven Oy
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Let us construct a turbulence theory for ITG 1gnoring coupling to phase space...

What is the turbulent diffusivity?

2 L 2 LT
Ulo P; Uth I kiop; ~
Dy ~u? 7o ~ —— ~ pu ~ = ‘
T 1LoTe kLo PiVth Yo L (LT) Ly
and so the heat flux is p’iLll
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More formally, Q ~ nDrT -, P Uth L I T
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it from above by some gyro-Bohm __ suft

function of I [Barnes, Parra & AAS PRL 107, 115003 (2011)]



“Fluid” Turbulence Theory: Outer Scale
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Let us construct a turbulence theory for ITG 1gnoring coupling to phase space...

These scalings basically work. Ly
kiopi ~ —

L

Yo pi
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Q
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[Barnes, Parra & AAS PRL 107, 115003 (2011)]




“Fluid” Turbulence Theory: Inertial Range
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Let us construct a turbulence theory for ITG 1gnoring coupling to phase space...
These scalings basically work.

So what? All this says is that leakage rate into phase space, ~ kjjgvyy, »
1s at most same order as k| gu |, as we indeed assumed!

A more sensitive (if less interesting to modelers) question 1s how free energy
cascades to smaller scales...

[Barnes, Parra & AAS PRL 107, 115003 (2011)]



“Fluid” Turbulence Theory: Inertial Range

Kolmogorov-style argument: constant tlux of free energy to small scales

NB: assuming no damping, 1.e., energy stays in “fluid” (»=0, 1, 2) moments.
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[Barnes, Parra & AAS PRL 107, 115003 (2011)]



“Fluid” Turbulence Theory: Inertial Range

Kolmogorov-style argument: constant flux of free energy to small scales

NB: assuming no damping, 1.e., energy stays in “fluid” (=0, 1, 2) moments.

f__ ~kiugp? ~ k2 @® =const = ¢ k12/3 < o
c L A @y &C
The “1D spectrum™: 0.001 E
9 - Cyclone x
B(ky) = 2mky. [ dkylol®) ~ - k7| T
0.0001 e

Critical balance: by causality, turbulence cannot stay
correlated at parallel scales larger than those

over which linear communication happens faster
than nonlinear decorrelation:

so, no correlation if

k 4/3
kjow < krur ok = kL) < (—l)

1 2 3

3 92 1 0
i) /Ly

[Barnes, Parra & AAS PRL 107, 115003 (2011)]



“Fluid” Turbulence Theory: Inertial Range

Kolmogorov-style argument: constant flux of free energy to small scales

NB: assuming no damping, 1.e., energy stays in “fluid” (=0, 1, 2) moments.

Then,at k| > kg,

2
LAY ki) @? ~ ki(p‘r’ =const = @ x k12/3

C

The “1D spectrum”:
2

B(ks) = 2mk. [ dky(lo) ~ £ oc k17

Critical balance: by causality, turbulence cannot stay

correlated at parallel scales larger than those
over which linear communication happens faster
than nonlinear decorrelation:

so, no correlation if

4/3
k“vth <k u k‘j/B = kHL” < (k—l)

That this works suggests
there is no phase mixing
in the inertial range

That this works suggests
the notional phase mixing
rate ~ K| v

is nevertheless same order
as k| u atall scales,

So why is there no exponential
cutoff of the spectrum?

[Barnes, Parra & AAS PRL 107, 115003 (2011)]



Hermite “Cascade”

Let us go back to our kinetic equation and now ask how transfer of free energy

to high 7/s occurs linearly:

0 m+1
5t +u L) 9m + vV T 9 gm+1 + gm 1| = —VMgm

In Fourier space: V|] — an s Om (k‘n = ('l bgnkn)"‘gm(kn)
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Hermite “Cascade”

Let us go back to our kinetic equation and now ask how transfer of free energy

to high 7/s occurs linearly:

0 /m +1 /m
(& +>@) gm + vtV ( T 9 gm+1 + gm 1) = —Vmgm
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6§ r |k |vt}
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ot V2 .

this looks like a derivative: indeed,

/ 1 -
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= 2m1/4 éaimlf 4G, this propagates perturbations
m

towards higher




Hermite “Cascade”

Let us go back to our kinetic equation and now ask how transfer of free energy

to high 7/s occurs linearly:

0 /m +1 /m
(at +>@) gm T+ Uthvll ( T 9 gm+1 T+ gm 1) = —Vmgm

In Fourier space: V|| — 1k, Gm (kll = (2 bgnk”)mgm(k”)
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|

C‘rn .6 L e—(frl/rr;_c)3f"2 '
E (3lkl |vth)2/3
m, =

[Zocco & AAS PoP 18, 102309 (2011)] 2v2v
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Hermite “Cascade”

So this is what Landau damping looks like in a system with some persistent
energy source at low 7 [see detailed tutorial in Kanekar et al. JPP 81, 305810104 (2015)]

It will dissipate collisionally all the energy that is injected, at the rate ~ |k |vgy, ,
independent of collisionality (because the 7 spectrum 1s shallow):

aw . . .

o = (injection) — Z Z 2vmCi, (k)
" ko omo | e 3/2

NB: W diverges as ~ e ~ V/ dm+/m ~ vm,' =~ |k|||vth
0
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Hermite flux,
constant form <& M.
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[Zocco & AAS PoP 18, 102309 (2011)] 2v2v
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Hermite ¢“Cascade”

So this is what Landau damping looks like in a system with some persistent
energy source at low 7 [see detailed tutorial in Kanekar et al. JPP 81, 305810104 (2015)]

It will dissipate collisionally all the energy that is injected, at the rate ~ |k |vyy, ,
independent of collisionality (because the 7 spectrum 1s shallow):

% = (injection) — Z z 21{mcm(kll)

ky m e
m ~ U dma/m ~ umgf2 ~ |k |ven
0

Phase mixing?

(ought to be active at all scales

because |k||ven ~ k1ul)
Turbulence?

> k1 p;




“Un-phase-mixing”

The crucial step that gave us robust phase mixing was assuming continuity in z space:

0q,, ki |ven -
i | H l t ( Vm + 1gme1 — VM gm— 1) = —VMgm
ot V2 J}
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[AAS et al., arXiv:1508.05988]



“Un-phase-mixing”

The crucial step that gave us robust phase mixing was assuming continuity in z space:

. ki |ven _ _
g + | Hl : (Vm+ ]-gm+1 — Vmgm—l) = -V n
0 V2 !

ol kv 0
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T =

This allows two solutions: 9m+1 = £Gm _ so either Gm or (—1)™Gum is continuous.

This can be encoded in the following decomposition:

gm = g;}.n, + (_l)mgv—n
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[AAS et al., arXiv:1508.05988]



“Un-phase-mixing”
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Forl K m K m¢ to lowest order,

vm+ 1§m+1 — Vmgm—l =0 = §m+1 ~ gm—l

This allows two solutions: 9m+1 = £Gm _ so either Gm or (—1)™Gum is continuous.

This can be encoded in the following decomposition:

L~ —

gm — gm + ( 1)" 9m

- gm == §m+1 - — g'm - gm—l-l . .
where 9,+n = 2 and G, = (_l)m 9 are continuous in 7.

propagates propagates

from low to high » from high to low 7

(phase mixing) (un-phase-mixing]) [AAS et al., arXiv:1508.05988]



“Un-phase-mixing”
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In energy terms: Cy, = C- + C, satisfies
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Hermite flux to high 7 can be
cancelled (on average) by the " modes
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(phase mixing) (un-phase-mixing!) [AAS et al., arXiv:1508.05988]



“Un-phase-mixing”
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nonlinearity...
G = gm + ( 1)1ng'r_n
- + - —g . :
where gt = grm 29m+1 and g = (—1)™ g 2gm+1 are continuous in 7.
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from low to high 7 from high to low 7

(phase mixing) (un-phase-mixing]) [AAS et al., arXiv:1508.05988]



“Un-phase-mixing”

Restore nonlinearity:

(%)nl=—lurwgm](kn)=— 2. wiley) - Vign(a)
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lif k and ¢ 1if k) and g
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[AAS et al., arXiv:1508.05988]



Plasma Echo

% == ‘/élkl |’Uthml/4iml/‘l""t = —umgs
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lif k and ¢ 1if k) and g
have same sign  have opposite sign
0 otherwise 0 otherwise

‘+” and ‘" modes couplel!
g = 0 is no longer a solution.
[AAS et al., arXiv:1508.05988] Free energy can come back from phase space!

[cf. Hammett et al. 1993]



Plasma Echo

A very compact form of the Hermite-space equation is achieved by defining

~+
fomia] Gufork 20,0 o m | Thisisabi
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transform,
with Z'U“ ~ 83
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lif k and ¢ 1if k) and g
have same sign  have opposite sign
0 otherwise 0 otherwise

‘“+” and ‘= modes couple!
g = 0 is no longer a solution.
[AAS et al., arXiv:1508.05988] Free energy can come back from phase space!

[cf. Hammett et al. 1993]



Plasma Echo

A very compact form of the Hermite-space equation is achieved by defining

=+
f = m1/4 ‘?”f for k) > 0, and s = \/TT'L This is a bit

g, for k| <0 like a Fourier
transform,
with Z'U” ~ 83

8 k Lla y
8_{+ %‘ 6-£+V32f=—;ul(p|)'vif(kll_pll)

[

A phase-mixing perturbation can turn around

and come back (un-phase-mix) if the advecting
velocity couples it to a parallel wave number of
opposite sign — plasma echo etfect.

[cf. Hammett et al. 1993]

[AAS et al., arXiv:1508.05988]



Plasma Echo

A very compact form of the Hermite-space equation is achieved by defining

~+
fomia] Gufork 20,0 o m | Thisisabi
9m for kll <0 like a Fourier

transform,
with Z'U“ ~ 88
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A phase-mixing perturbation can turn around

10*

1 I LI L llll I 1 LI ll- 100
k1 pi ]

09" and come back (un-phase-mix) if the advecting
08 wvelocity couples it to a parallel wave number of
0.7 opposite sign — plasma echo effect.
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| My ---Anditdoes indeed do itl Here are some plots
: of the relative Hermite flux
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Phase Mixing vs. Turbulence

A very compact form of the Hermite-space equation is achieved by defining
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fomial Gnfork 20, g o— m | Thisisabi
g, for k| <0 like a Fourier
transform,
with Z'U” ~ 83
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[

The perturbation at low s, f(s ~ 1) ~ ¢, and at some fixed k| and k||,

will propagate to higher s along the characteristic:

s ~ k|vwt,
until it is swept by nonlinear advection (u ) to higher k; in one nonlinear time,
— —4/3
tN(k_]_u_]_) IO(k‘_L / .

kv
Thus, f(8) ~ @ for § < -2
kluL

, of, equivalently, for the phase-space spectrum:
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Conclusions

1
vV Atk 2 kj_/B\/m , linear phase mixing dominates, £, o \/_77 :

but there is very little energy (~ k”_ ?)

1

mb/2’

4/3 . .. .
v Atk Sk _L/ VM |, nonlinear mixing (turbulence) dominates, £, o
most energy is there, but collisional dissipation— 0 as v — 0;

total free energy stored in phase space is finite and independent of collisionality

E E,, — const, v E mE,, = 0as v — +0 T'his means spatial mixing

m m (“turbulence”)
In contrast, in the linear problem, wins over phase mixing
E Eo ~ l/_l""“, 1 5 mk,, — const as v — +()
m 7L
+
Em m—l/Z

[AAS et al., arXiv:1508.05988]
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k| p; 0 v" Return echo flux cancels phase-mixing
: 4/3
08 flux at k| S k'
o (below critical balance);
0.6 turbulent cascade of low Hermite
10" 4 405 moments is effectively fluid...
- 04 we might say that, for the purposes of
10 free-energy accounting in turbulence,
| % “Uandan damping is suppressed”
ke I L | 101
10° e nd L [AAS et al., arXiv:1508.05988]
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NB

All of the arguments presented above rely on the approximation of
m > 1 and, indeed, mt4 > 1 ,
1.e., truly asymptotically small collisionality (= a lot of velocity-space structure).
In reality (experimental and certainly numerical), the collisionality or effective collisionality
(in codes) is rarely truly small. When it is moderate and only relatively little Hermite space is
available to the free energy, processes that require such space — most notably the echo flux — are likely
to be less pronounced. This probably accounts for how well Landau fluid closures have tended
to capture quantitative behavionr of turbulence in tokamakes.
So perhaps (perhaps!) the scenario is
v > w — collisional system, fluid
v < w — weakly collisional system, “Landau-fluid”
v € w — “collisionless” system, like fluid again?
Because the m spectrum is steep, a Landau fluid closure with enough moments should correctly

capture the echo effect, while the damping terms will take care of the cutoff at critical balance.

[AAS et al., arXiv:1508.05988]

This 1s quite a cute problem to think about...
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