

Turbulence stabilization due to high beta and fast ions in high performance plasmas at ASDEX Upgrade and JET

Hauke Doerk

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

Acknowledgements

H. Doerk¹, C.Challis², J. Citrin^{3,4}, M. Dunne¹, J. Garcia², T. Görler¹, D. R. Hatch⁷, F. Jenko⁵, B. Kurzan¹, A. Banon-Navarro⁵, R. McDermott¹, M. J. Pueschel⁸, P.A. Schneider¹, D. Told⁵, E. Wolfrum¹, the ASDEX Upgrade Team¹ and JET contributors^{*}

EUROfusion Consortium, JET, Culham Science Centre, Abingdon, OX14 3DB, UK

¹Max-Planck-Institut für Plasmaphysik, Garching, Germany
²CCFE, Culham Science Centre, Abingdon, OX14 3DB, UK
³CEA, IRFM, F-13108 Saint-Paul-lez-Durance, France
⁴FOM Institute DIFFER, NL-3430 BE Nieuwegein, The Netherlands
⁵University of California, Los Angeles, CA 90095, USA
⁷University of Texas, Austin, TX, USA
⁸University of Madison, Wisconsin, USA
* See the Appendix of F. Romanelli et al., Proceedings of the 25th IAEA Fusion Energy Conference 2014, Saint Petersburg, Russia

IPP Outline

- •High beta $\beta_s = 8\pi p_{0s}/B_0^2$ is essential for fusion performance (but MHD stability set upper limit)
- •Scaling of the energy confinement time τ_E with β is not clear
- $\boldsymbol{\cdot}\boldsymbol{\tau}_{\mathsf{E}}$ is limited by **plasma turbulence**

www.genecode.org developed at IPP, Germany UCLA, LA, USA UT Austin, USA EPFL Lausanne Swizerland CHALMERS, Gothenborg, Sweden

 τ_E/τ_{98y2} in advanced scenarios ($\beta_N \ge 2.4$, $H_{98} \ge 1$)

- •Theoretical foundation:
 - gyrokinetic modeling
 - impact of β and fast ions (β_{fast})
- •Analyzing turbulence in **experimental scans** using **gyrokinetic code GENE** [Jenko PoP2000]
 - I) A beta-scaling experiment at ASDEX Upgrade
- II) A power scan at ASDEX Upgrade
- III) A power scan at JET-ILW (advanced inductive)

•Summary and conclusions

Electromagnetic effects in gyrokinetic turbulence modelling

The gyrokinetic equations solved in GENE

• Vlasov equation (for each species)

IPP

• Gyrokinetic (GK) Maxwell equations (incl. FLR terms)

$$\partial_t f_1 + \left(v_{\parallel} \mathbf{b}_0 + \frac{B_0}{B_{0\parallel}^*} (\mathbf{v}_{\nabla\chi\times B} + \mathbf{v}_{\nabla B} + \mathbf{v}_c) \right) \\ \cdot \left(\mathbf{\nabla} f_1 + \frac{1}{mv_{\parallel}} \left(q \bar{\mathbf{E}}_1 - \mu \mathbf{\nabla} (B_0 + \bar{B}_{1\parallel}) \right) \frac{\partial f_1}{\partial v_{\parallel}} \right) = \langle C[f] \rangle$$

$$\begin{split} \nabla_{\perp}^{2}\phi &= -8\pi^{2}\sum_{j}\frac{q_{j}B}{m_{j}}\int \mathrm{d}v_{\parallel}\mathrm{d}\mu\left(J_{0}f_{1j} + \frac{F_{0j}}{T_{0j}}\left((J_{0}^{2} - 1)q_{j}\phi + \mu J_{0}I_{1}B_{1\parallel}\right)\right)\\ \nabla_{\perp}^{2}A_{1\parallel} &= -\frac{8\pi^{2}}{c}\sum_{j}\frac{q_{j}B}{m_{j}}\int \mathrm{d}v_{\parallel}\mathrm{d}\mu v_{\parallel}J_{0}f_{1j}\\ B_{1\parallel} &= -8\pi^{2}\sum_{j}\frac{B}{m_{j}}\int \mathrm{d}v_{\parallel}\mathrm{d}\mu\left(\mu I_{1}f_{1j} + \mu\frac{F_{0j}}{T_{0j}}\left(q_{j}J_{0}I_{1}\phi + \mu I_{1}^{2}B_{1\parallel}\right)\right) \end{split}$$

The gyrokinetic equations solved in GENE

• Vlasov equation (for each species)

• Gyrokinetic (GK) Maxwell equations

$$\partial_t f_1 + \left(v_{\parallel} \mathbf{b}_0 + \frac{B_0}{B_{0\parallel}^*} (\mathbf{v}_{\nabla\chi\times B} + \mathbf{v}_{\nabla B} + \mathbf{v}_c) \right) \\ \cdot \left(\mathbf{\nabla} f_1 + \frac{1}{mv_{\parallel}} \left(q \bar{\mathbf{E}}_1 - \mu \mathbf{\nabla} (B_0 + \bar{B}_{1\parallel}) \right) \frac{\partial f_1}{\partial v_{\parallel}} \right) = \langle C[f] \rangle$$

•Comprehensive physics:

Linearized Landau-Boltzmann collisions, ExB + parallel flow shear, experimental geometry, global and local version

• Arbitrary number of kinetic **species**, incl. impurities + **fast ions**

- Delta-f method: $\mathbf{f}_{0s} = \mathbf{F}_{Ms} + \mathbf{f}_{1s}$ (for now: $\mathbf{F}_{0,fast} = \mathbf{F}_{M,equiv}$)
- \bullet Typical domain $L_x{\sim}250\rho_s, L_y{\sim}120\rho_s, \ L_{v||}{\sim}L_{v_{\perp}}{\sim}3v_{vth}$

192x48x32x48x16x4 ~ 10^9 grid cells for x,y,z,v,µ and species

•Expensive simulations (150k CPUh per nonlinear run)

Nonlinear solution requires modern supercomputers

Electromagnetic (β-) effects in gyrokinetics

• Dynamical effects, plasma response:

- β >0 allows for magnetic fluctuations -modified electric field $\bar{E}_{1\parallel} = -\nabla_{\parallel}\bar{\phi}_1 - \frac{1}{c}\frac{\partial \bar{A}_{1\parallel}}{\partial t}$ -modified ExB drift velocity

$$\mathbf{v}_{\nabla\chi\times B} = \frac{c}{B^2} \mathbf{B} \times \nabla \left(\bar{\phi}_1 - \frac{1}{c} v_{\parallel} \bar{A}_{1\parallel} + \frac{1}{q_j} \mu \bar{B}_{1\parallel} \right)$$

• Fast ions (NBI, ICRH, Fusion alphas) contribute to geometry and dynamics $\beta_{tot}=\beta_{th}+\beta_{fast}$

- Modification of electrostatic instabilities: ITG / ETG, TEM [Ion/Electron Temperature Gradient driven instability, Trapped Electron Mode]
- New instabilities: KBM, MTM, BAE [Kinetic Ballooning Mode, MicroTearing Mode Beta-induced Alfven Eigenmode]

Some previous results on electromagnetic turbulence

(+)increasing $\boldsymbol{B}\left(\boldsymbol{\alpha}\right)$ can reduce transport:

- •ITG transport reduction
 - -Linear: adds Alfvénic polarization [Kim PoP' 1993] -Nonlinear: increased zonal flow coupling [Pueschel PoP'08]
 - -EM fast ion stabilization: [Romanelli PPCF'10, Holland NF'12, Citrin PRL'13 Citrin PPFC'14, Garcia NF'15]
- ETG stabilization in the edge [Jenko PPCF'01]

(-)increasing **ß can enhance transport:**

- Magnetic transport in ITG turbulence [Pueschel PoP'08] due to **nonlinearly excited MTMs** [Hatch PRL'13]
- MTM turbulence: χ_e [Doerk PRL'12, Guttenfelder PRL'12]
- KBM turbulence: Initial gyrokinetic results [Pueschel PoP 2008, Maeyama NF 2014]
- Fast particle driven turbulence [e.g. Bass PoP'10]

Which of the effects is relevant for experiments?

Gyrokinetic analysis of an ASDEX Upgrade beta scaling experiment

A β scaling experiment at ASDEX Upgrade [Doerk PoP'15]

•**β** scan at constant $\mathbf{p}^*, \mathbf{v}^*$: $\mathbf{n}^* \mathbf{B}^4$, $\mathbf{T}^* \mathbf{B}^2$, $\beta^* \mathbf{B}^4$ [expected power scaling $\mathbf{Q}_{_{\mathbf{0}\mathbf{B}}} \sim \mathbf{P} \sim \mathbf{B}^7 \sim \beta^{7/4}$]

- •Weak β -degradation: $\tau_E B \sim \beta^{-0.2}$
- •Reference position: ρ_{tor} =0.5

•Imperfect measurements,

IPP

but relevant turbulence regime can be investigated

Main variation: $\beta_B = 1.9\beta_A$

Microturbulence regimes in AUG β scan: ρ_{tor} =0.5

IPP

- •β scan (fixed geometry): transition of unstable ITG - MTM - KBM in both cases
- -Ratio β/β_{crit} reaches 20% (A) and 40% (B) KBM is stable
- •Nonlinear simulations: little MTM transport even in high beta case

Main β-effect: ITG-stabilization

IFG turbulence simulations at ρ_{tor} =0.5

Steeper gradients due to β

Gyrokinetic analysis of ASDEX Upgrade power scan experiments

Hybrid scenario

- aka: advanced inductive
- Flat **q**, low shear in the center
- Low density, Low current
- High $\boldsymbol{\beta}_{N} = <\boldsymbol{\beta}>*aB_{0}/I$
- High fusion gain expected
- Discussed for ITER operation

Previous work (C-wall components) [Maggi NF 2010] AUG and DIIID power scans

- $\bullet \tau_{E}$ improves (pedestal and core contributions)
- •GK analysis: β effects are pronounced

Refinement is scheduled for 2015 AUG campaign

• n_e decreases by 15%, β_N increases from ~1.2 to ~2.4

- Fast ion pressure increases with power
- • τ_{E} ~0.08s similar (slightly improved at high β_{N})
- •Larger a/L_{Ti} at outer radii \rightarrow reference position $\rho_{tor}=0.7$

Test for β , ExB, and fast ion effects

AUG power scan (ρ_{tor} =0.7): Microinstabilities

- **β/β**_{crit}=23% little **β**-stabilization of ITG
- no impact of fast ions and (N impurities)

- β/β_{crit} is figure of merit for EM stabilization of ITG
- •fast ions lower β_{crit}

Evidence for stabilizing role of fast ions

AUG power scan ($\rho_{tor}=0.7$): low-k turbulence

Low power

• Excellent **agreement** between **power balance** and **GENE** [already w/o fast ions and N]

High power

• Two species simulation is inconsistent with experiment

Evidence for stabilizing role of fast ions

AUG power scan (p_{tor}=0.7): low-k turbulence

Low power

IPP

• Excellent **agreement** between **power balance** and **GENE** [already w/o fast ions and N]

High power

- Including **fast ions** is **essential** to reconcile **exp. Q**_i (and Q_e)
- Minor impact of ExB flow shear

Evidence for stabilizing role of fast ions

Gyrokinetic analysis of a power scan in advanced inductive JET plasmas

- • $\tau_{E} \sim P^{-0.30}$ in JET ILW at low triangularity δ ($\tau_{98y2} \sim P^{-0.69}$)
- Conversion to dimensionless: $\tau_{F} \sim \beta^{0.5}$ (sensitive: should be taken with care)
- •C-wall GK results: EM + fast ion stabilization of turbulence at inner radii

What is the physics behind weaker power degradation?

Hybrid power scans at JET [Challis NF 2015]

- • $\tau_{E} \sim P^{-0.30}$ in JET ILW at low triangularity δ ($\tau_{98y2} \sim P^{-0.69}$)
- Conversion to dimensionless: $\tau_{E} \sim \beta^{0.5}$ (very sensitive)
- •C-wall GK results: EM + fast ion stabilization of turbulence at inner radii

What is the physics behind weaker power degradation?

P Fast ions in JET hybrid plasmas (C-Wall)

(4)Increased β ->(2)

->Better confinement! Limit: fast ion transport due to BAE/KBM turbulence

Positive core-edge feedback possible ILW?

Strong β and fast ion effects in high power case

IPP

JET-ILW hybrid P scan (ρ =0.33): thermal transport

Low Power (LP)

- ${}^{\bullet}Q_{i}$ and Q_{e} consistent with experiment
- Fast ions not important
- ITG is β-stabilized

High Power (HP)

•ITG strongly stabilized due to β (+dynamic fast ion effect, not shown)

Strong β stabilization at high power

High Power (HP)

- •**ITG** strongly **stabilized** due to β
- (+dynamic fast ion effect, not shown)
- Transition from ITG to KBM/BAE turbulence: β>β_{crit}

Strong β stabilization at high power

Turbulence characteristics

IPP

KBM and ITG turbulence can be distinguished

 04_{02}

0

 α

0.1

 $-\pi$

0

 α

π

π

0.1

 $-\pi$

Sensitivity to q-profile

•HP Alternative equilibrium

(q profile within MSE error bars)

-Lower **q** (1.2→0.95)

-higher magnetic shear s $(0.14 \rightarrow 0.28)$

•KBM/BAE threshold is sensitive:

 β_{crit} ~S [MDH estimate]

- •20% a/L_{Tcrit} increase
- linear GK result [Jenko PoP01]
 a/L_{Tcrit} ~ (1+T_i/T_e)(1.33+1.91s/q)~1
 already explains trend

Accurate equilibrium reconstruction desireable

Increase of a/L_{Ti} due to β and fast ions

Electromagnetic effects are experimentally relevant

- ASDEX Upgrade β scan -nonlinear a/L_T upshift increases with β at ρ =0.5
- ASDEX Upgrade power scan
 - -ITG turbulence reduced by fast ions at outer radii
- JET hybrid power scan -ITG transport reduced by β and fast ion dynamics at inner radii
- Thresholds for KBM (and MTM) exist

Conclusions

- Extrapolation to future machines requires understanding of electromagnetic microturbulence
- Beneficial effects may be explored for scenario development
- GK turbulence simulations can be used to calibrate simplified models
- Including β_{fast} (on top of $\beta_{th})$ is considered for refined $\tau_{E}\text{-scaling}$

Thank You!