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     Outline

●High beta βs=8π p0s/B0
2

  is essential for fusion performance
 (but MHD stability set upper limit)
●Scaling of the energy confinement time τE

  with β is not clear: τE98y2 ~ β-0.9

●τE is limited by plasma turbulence

●Theoretical foundation:
    - gyrokinetic modeling
    - impact of β and fast ions (βfast)
 

●Analyzing turbulence in experimental scans
  using gyrokinetic code GENE [Jenko PoP2000]

 I) A beta-scaling experiment at ASDEX Upgrade
  II) A power scan at ASDEX Upgrade
  III) A power scan at JET-ILW (advanced inductive)
 

●Summary and conclusions

www.genecode.org
developed at IPP, Germany

UCLA, LA, USA
 UT Austin, USA

EPFL Lausanne Swizerland
CHALMERS, Gothenborg, Sweden

τE/τ98y2 in advanced scenarios (βN≥2.4, H98≥1)

[Luce NF 2014]
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Electromagnetic effects in
gyrokinetic turbulence modelling
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•Vlasov equation
  (for each species)

•Gyrokinetic (GK)
  Maxwell equations
  (incl. FLR terms)

      The gyrokinetic equations solved in GENE
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•Vlasov equation
  (for each species)

•Gyrokinetic (GK)
  Maxwell equations

•Comprehensive physics: 
  Linearized Landau-Boltzmann collisions, ExB + parallel flow shear, 
  experimental geometry, global and local version

•Arbitrary number of kinetic species, incl. impurities + fast ions 

•Delta-f method:   f0s = FMs + f1s      

   (for now: F0,fast = FM,equiv)

•Typical domain Lx~250ρs,Ly~120ρs, Lv||~Lv┴
~3vvth 

  192x48x32x48x16x4 ~ 109 grid cells for x,y,z,v,μ and species

•Expensive simulations (150k CPUh per nonlinear run)

      The gyrokinetic equations solved in GENE

Nonlinear solution requires modern supercomputers
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•Geometric effects: (Change Grad-
  Shafranov magnetic equilibrium)

•Dynamical effects, plasma response:
 

-β>0 allows for magnetic fluctuations
 

-modified  electric field
 

-modified ExB drift velocity

•Fast ions (NBI, ICRH, Fusion alphas)
contribute to geometry and dynamics

  βtot=βth+βfast

  

•Modification of electrostatic 
instabilities: ITG / ETG, TEM 
[Ion/Electron Temperature Gradient driven 
instability, Trapped Electron Mode]
 

•New instabilities: KBM, MTM, BAE
[Kinetic Ballooning Mode, MicroTearing Mode
 Beta-induced Alfven Eigenmode]

      Electromagnetic (β-) effects in gyrokinetics    

Shafranov shift
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(+)increasing ß (α) can reduce transport:

•ITG transport reduction
  -Linear: adds Alfvénic polarization [Kim PoP' 1993]

  -Nonlinear: increased zonal flow coupling
    [Pueschel PoP'08]

-EM fast ion stabilization: [Romanelli PPCF'10,
    Holland NF'12, Citrin PRL'13  Citrin PPFC'14, Garcia NF'15]

• ETG stabilization in the edge [Jenko PPCF'01]

(-)increasing ß can enhance transport:

•Magnetic transport in ITG turbulence [Pueschel PoP'08]

  due to nonlinearly excited MTMs [Hatch PRL'13]

•MTM turbulence: χe [Doerk PRL'12, Guttenfelder PRL'12]

•KBM turbulence: Initial gyrokinetic results
  [Pueschel PoP 2008, Maeyama NF 2014]

•Fast particle driven turbulence [e.g. Bass PoP'10]

Which of the effects is relevant for experiments?

[Pueschel PoP 2008]

     Some previous results on electromagnetic turbulence  

[Doerk 2012]
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Gyrokinetic analysis of an 
ASDEX Upgrade 

beta scaling experiment
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Main variation: βB=1.9βA  

●β scan at constant ρ*,ν*:  n~B4,  T~B2,  β~B4  [expected power scaling Q
gB 

~ P ~ B7 ~ β7/4] 

●Weak β-degradation:  τEB~β-0.2

●Reference position: ρtor=0.5

●Imperfect measurements,
 but relevant turbulence regime can be investigated 

     A β scaling experiment at ASDEX Upgrade [Doerk PoP'15]  

Low β: case A

High β: case B
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Main β-effect: ITG-stabilization

●β scan (fixed geometry): transition of 
unstable ITG - MTM - KBM in both cases
 

●Ratio β/βcrit reaches 20% (A) and 40% (B)

KBM is stable
 

●Nonlinear simulations: little MTM transport 
even in high beta case

    Microturbulence regimes in AUG β scan: ρtor=0.5  
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Steeper gradients due to β  

b

     ITG turbulence simulations at ρtor=0.5    

Nonlinear up-shift

upshift due to β 



Hauke Doerk | EFTC | Lisbon, Portugal | 5.-8. Oct. 2015 |  13

Gyrokinetic analysis of
 ASDEX Upgrade

power scan experiments

thanks to P. Schneider et al.
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Refinement is scheduled for 2015 AUG campaign

    Hybrid power scans at AUG and DIIID [Maggi NF 2010]  

Previous work (C-wall components)  [Maggi NF 2010]

AUG and DIIID power scans

•τE improves (pedestal and core contributions) 

•GK analysis: β effects are pronounced  -MTM linear 
unstable
   (no nonlinear simulation available)
  -gyrokinetic ITG heat fluxes at ρ=0.5 “too high”
   (high β, ExB and fast ions are not considered)

[Maggi NF'10]

[Maggi NF'10]

(cartoon picture) Hybrid scenario

• aka: advanced inductive

• Flat q, low shear in the center

• Low density, Low current

• High βN = <β>*aB0/I

• High fusion gain expected

• Discussed for ITER operation 
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•ne decreases by 15%, βN increases from ~1.2 to ~2.4

•Fast ion pressure increases with power

•τE~0.08s similar (slightly improved at high βN)

•Larger a/LTi at outer radii → reference position ρtor=0.7

    For now: AUG 23227 power scan (W-Wall)

Test for β, ExB, and fast ion effects

10MW NBI,
some off-axix

5MW NBI
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Evidence for stabilizing role of fast ions

    AUG power scan (ρtor=0.7): Microinstabilities

Low power

•β/βcrit=23%
  little β-stabilization of ITG

•no impact of
  fast ions and (N impurities)

High power 

•β/βcrit=0.37 [0.57]

•β/βcrit is figure of merit for
  EM stabilization of ITG

•fast ions lower βcrit
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Evidence for stabilizing role of fast ions

Low power

•Excellent agreement between
  power balance and GENE
  [already w/o fast ions and N] 

High power

•Two species simulation is
   inconsistent with experiment  

    AUG power scan (ρtor=0.7): low-k turbulence

no fast ions

exp.

exp.
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Evidence for stabilizing role of fast ions

Low power

•Excellent agreement between
  power balance and GENE
  [already w/o fast ions and N] 

High power

•Including fast ions is essential

to reconcile exp. Qi (and Qe)

•Minor impact of ExB flow shear

    AUG power scan (ρtor=0.7): low-k turbulence

no fast ions

exp.

exp.
with fast ions
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Gyrokinetic analysis of a 
power scan in advanced 

inductive JET plasmas

thanks to J. Citrin, J. Garcia et al.
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•τE ~P-0.30 in JET ILW at low triangularity δ   (τ98y2~P-0.69)

•Conversion to dimensionless: τE~β0.5   (sensitive: should be taken with care)

•C-wall GK results:  EM + fast ion stabilization of turbulence at inner radii

What is the physics behind weaker power degradation?

    Hybrid power scans at JET [Challis NF 2015]  

LP
 

HP
 

[Challis NF'15]

Low δ
ILW: τE ~P-0.30 

High δ
ILW: τE ~P-0.30

C:     τE ~P-0.65

Low δ
C: τE ~P-0.35 W

PP P
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•τE ~P-0.30 in JET ILW at low triangularity δ   (τ98y2~P-0.69)

•Conversion to dimensionless: τE~β0.5   (very sensitive)

•C-wall GK results:  EM + fast ion stabilization of turbulence at inner radii

What is the physics behind weaker power degradation?

    Hybrid power scans at JET [Challis NF 2015]  

LP
 

HP
 

[Challis NF'15]

Low δ
ILW: τE ~P-0.30 

High δ
ILW: τE ~P-0.30

C:     τE ~P-0.65

Low δ
C: τE ~P-0.35 W

PP P

W
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(1)Increased fast ion pressure (inner core)

(2)Reduced core transport (β) + Enhanced pedestal stability (Shafranov-shift) 

(3)Increased core temperature

(4)Increased β  ->(2)

->Better confinement!  Limit: fast ion transport due to BAE/KBM turbulence 

Positive core-edge feedback possible ILW?

with fast ions

no fast ions

exp.

     Fast ions in JET hybrid plasmas (C-Wall)

EM no fast ions

EM with fast ions

[Citrin PPCF'15]

[Garcia NF'15]

Electrostatic (ES)

inner core ρ=0.33 pedestal

exp.
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Strong β and fast ion effects in high power case

kyρs=0.35: mode transition from ITG to KBM/BAE 

Low power: some β-stabilization expected β/βcrit ~0.5

High power: experiment is close to threshold: βexp~βcrit

Note: evidence for increased βcrit in global simulations at low shear [Moradi EPS'15]

low power ρtor=0.33                                      high power ρtor=0.33

    JET-ILW hybrid P scan (ρ=0.33): microinstabilities
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●KBM/ITG at low k;  instabilities at high k TEM/ETG are weak

●β-stabilization of ITG, very strong in high power case

●Multiple fast ion effects at high power:
dynamic:                                             geometric:
-stabilization of ITG                          -stabilization of KBM/BAE
-enhanced  KBM/BAE drive

low power                                                           high power

ITG
 

TEM
 

KBM/BAE
 

ITG
 

KBM/BAE
 

KBM/BAE:
● ω~ωGAM
●    p driven
(thermal + fast)

● sensitive to β 
 

    JET-ILW hybrid P scan (ρ=0.33): microinstabilities  

Strong β and fast ion effects in high power case
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Qe

    JET-ILW hybrid P scan (ρ=0.33): thermal transport  

Qi

Low Power (LP)
●Qi and Qe consistent with experiment
●Fast ions not important
● ITG is β-stabilized
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Qe

    JET-ILW hybrid P scan (ρ=0.33): thermal transport  

Qi

High Power (HP)
● ITG strongly stabilized due to β
(+dynamic fast ion effect, not shown)

ES

EM

exp.
exp.

Strong β stabilization at high power
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Qe

    JET-ILW hybrid P scan (ρ=0.33): thermal transport  

Qi

High Power (HP)
● ITG strongly stabilized due to β
(+dynamic fast ion effect, not shown)

●Transition from ITG to KBM/BAE turbulence: β>βcrit

ES

EM

KBM/BAE turbulence: high Qe (and Qfast)

Strong β stabilization at high power

exp.
exp.
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γ/(cs/α)

lin. ITG

lin. KBM

Experimentally accessible
  (in principle):

•Phase relations:
  (transport range kyρs<0.7)
  -ITG:  n x Φ ~ 0
  -KBM n x Φ ~ π
    note: interchange mode, π/2 expected
    [Manz PPCF'14, Scott PoP'05]

•Frequency analysis (FFT)
  (in linear drive range  kyρs<0.4)
  -KBM ω~cs/a
  -ITG   ω~0.2cs/a

KBM and ITG turbulence can be distinguished

i

i
i

e

ES, β=0
 ITG

i

i
i

e

     Turbulence characteristics

EM βexp

KBM

γ/(cs/α)
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●HP Alternative equilibrium
(q profile within MSE error bars)

-Lower q (1.2→0.95)

-higher magnetic shear s (0.14→0.28)

●KBM/BAE threshold is sensitive:
βcrit~s  [MDH estimate]

Qi

Accurate equilibrium reconstruction desireable

exp.

    Sensitivity to q-profile

●20% a/LTcrit increase

● linear GK result [Jenko PoP01]

 a/LTcrit ~ (1+Ti/Te)(1.33+1.91s/q)~1

already explains trend
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Qi

Qi

Increase of a/LTi due to β and fast ions

    JET-ILW hybrid P scan (ρ=0.33): thermal transport
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Electromagnetic effects are experimentally relevant

• ASDEX Upgrade β scan
-nonlinear a/LT upshift increases with β at ρ=0.5

• ASDEX Upgrade power scan

-ITG turbulence reduced by fast ions at outer radii

• JET hybrid power scan
-ITG transport reduced by β and fast ion dynamics at inner radii

• Thresholds for KBM (and  MTM) exist

Conclusions
• Extrapolation to future machines requires understanding

of electromagnetic microturbulence

• Beneficial effects may be explored for scenario development

• GK turbulence simulations can be used to calibrate simplified models

• Including βfast (on top of βth) is considered for refined τE-scaling

Thank You!

       Summary and conclusions
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