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Structure-Preserving Discretisation

@ geometric structure: global property of differential equations, which can
be defined independently of particular coordinate representations !

e.g., topology, conservation laws, symmetries, constraints, identities

@ preservation of geometric properties is advantageous for numerical
stability and crucial for long time simulations

@ bounds global error growth and reduces numerical artifacts

@ various families

o Lie group integrators, discrete Euler-Poincaré methods

o integral preserving schemes, discrete variational derivative method,
discrete gradients

o discrete differential forms and mimetic methods

o symplectic and multisymplectic methods

e variational and Poisson integrators

1
Christiansen, Munthe-Kaas, Owren: Topics in Structure-Preserving Discretization, Acta Numerica 2011



Geometric Structures of the Vlasov-Maxwell System PP

Vlasov equation in Lagrangian coordinates

XS = ‘/vs7 Vs = esE(t, Xs) —+ E Vs X B(ta XS)
C

Js(t Xs(2), Vs(1) = fs(X:(0), V(0))

@ Maxwell's equations in Eulerian coordinates

OF . }:
EZVXija V-E=—p, p(t,ﬂ?): - es/dvfs(taxav)’
OB ,

E:_VXE’ V-B=0, (it z) = Es es/dvfs(t,x,v)v

the spaces of electrodynamics have a deRham complex structure

Poisson structure (antisymmetric bracket, Jacobi identity)

variational structure (Hamilton's action principle)

@ energy, momentum and charge conservation (Noether theorem)



Differential Forms

@ mathematical language of vector analysis too limited to provide an
intuitive description of electrodynamics (only two types of objects)
e ¢: scalar field
e FE: change of the electric potential over an infinitesimal path element
o B: flux density (integrated over a two-dimensional surface)
o p: charge density (integrated over a three-dimensional volume)

@ tensor analysis is concise and general, but very abstract

@ subset of tensor analysis: calculus of differential forms, combining much
of the generality of tensors with the simplicity of vectors

@ in three dimensional space: four types of forms
o O-forms A®: scalar quantities (scalar field)
o 1-forms Al: vectorial quantities (field intensity)
o 2-forms A?: vectorial quantities (flux density)
o 3-forms A3: scalar quantities (scalar density)



Maxwell’s Equations and the deRham Complex PP

@ electromagnetic fields as differential forms
peA(Q), A EcAY(Q), B JcA(Q), pcA3Q)

exterior derivative d : A® — A1 generalises grad, curl, div

@ the spaces of Maxwell’s equations build an exact deRham sequence

for geometers

0 - A%Q) & Al & A2 & A3Q) — 0

for analysts

grad div
—_— —

0 — H(Q) H(ewl, Q) % H(div, Q) I2(Q) — 0
@ exactness: the range of d’: A? — A™! equals the kernel of d**!

dde = 0, curl grad e = 0, divcurle =0



Discrete deRham Complex

@ discrete deRham complex

0 = A%Q) & Al & A2 & A3Q) - o
L L L Ly

d d d
0 — AYNQ) = AN(Q) = AZ(Q) = A}(Q) — 0

@ the discrete spaces AZ C A are finite element spaces of differential
forms, building an exact deRham sequence
@ compatibility: projections commuted with the exterior derivative

@ by translating geometrical and topological tools, which are used in the
analysis of stability and well-posedness of PDEs, to the discrete level
one can show that exactness and compatibility guarantee stability?

2
Arnold, Falk, Winther: Finite element exterior calculus, homological techniques, and applications. Acta Numerica 15, 1-155, 2006.

Arnold, Falk, Winther: Finite Element Exterior Calculus: From Hodge Theory to Numerical Stability, Bulletin of the AMS 47, 281-354, 2010.



Spline Differential Forms

o electrostatic potential ¢, € A9(Q)

= bijn() A ()

7.77

@ zero-form basis

A2<ﬂ>=span{5ﬂ”< ) S(2) Sl >}

@ the i-th basic splines (B-spline) of order p is defined by

— I _ Z; — X 1
Plr)= LT gty TiHp T T -l
(@ Titp-1— T ' (=) Tivp — Tit1 w1 (@)

1 z€ [z, zi41)
Sl.(a:)—{o else o



Spline Differential Forms

e electric field intensity Ej, € AI(Q)

Ehtl' Zemk zgk

05,k
@ one-form basis
D} (') 85(2%) Sy(a”)
AL(Q) = span{ 0 )
0
0
Sp(a) DE (%) Sy(a7) |
0
0
o))
S7(a) 8% (2%) DY(a?)

@ spline differentials



Spline Differential Forms

e magnetic flux density By € A2(Q)

Bhta: Zb”k mk
2,5,k

@ two-form basis
Sy (a')
A%(Q) = span

ooog
5
IS
5

DI 812 D) |
0
0
o)

Dy (a') D} (4%) S} (4*)

@ spline differentials
d 54'7_1
(2) = D(&) — DP,, () Do) — p )



Spline Differential Forms

e charge density p;, € A3(Q)

prk wk

0,5,k

@ three-form basis

A3(9) = span {Di?(xl) D () DI () }

@ spline differentials




Morrison-Marsden-Weinstein Bracket

@ Vlasov-Maxwell noncanonical Hamiltonian structure
oF 6G 0 5F 0G 0 6G OF
(rGp BB = [ df[éf 5f] I df(@ 5 OB over 5E>
06F 046G 5F 5G 5G oF

@ Hamiltonian: sum of the kinetic energy of the particles, the
electrostatic field energy and the magnetic field energy

1 1
- /|v[2f(x,v) d:zdv+/<|E(x)|2+|B(x)|2)dx
2 2
@ time evolution of any functional F[f, E, B]

d
—FIf, B, B = {F,}}



Discretisation of the Vlasov-Maxwell Poisson System

o finite-dimensional representation of the fields f, E, B

o discretisation of the brackets
(F, G}V,E,B]z/dxdvf[éf o
(255 290, [ (5, 5656
@ discretisation of functionals
H = ;/|U|2f(:c,v) dxdv+;/ (1E@ + | B@) ) da
@ time discretisation

d
EtF[f’ E, Bl ={FH}

5F G /dd 9 6F 6G 9 6G OF
I\ 9vsr 5B " duef o

IPp

oF
0B

)

i)



Discretisation of the Fields

@ particle-like distribution function for N, particles labeled by a,

Np

Sz, v, t) = Z waé(xf :pa(t)) 5(1)7 va(t)),

a=1
with weights w,, particle positions z, and particle velocities v,

@ 1-form and 2-form basis functions (vector-valued)

Ad () A (2)
AL(z) = [ AR (@) | A2(z) = | AZ* ()
Ao’ (z) AZ ()

@ semi-discrete electric field Fj and magnetic field By,
Ep(t,z) = > eal(t) AL(2), Bi(t,) = Y ba(t) A2(2)
O{GZS anB

with coefficient vectors e and b



Discretisation of the Distribution Function

e functionals of the distribution function, F[f], restricted to particle-like
distribution functions,

NF
fr(z, v, t) = Z we 6(z — 24(t)) 6(v— va(?)),
a=1
become functions of the particle phasespace trajectories,
Flfn] = (xa, Va)
@ replace functional derivatives with partial derivatives
oF 9 oF oF o 0F
and = Wyg—=——
axa Ve 5f (0,00) 0vg 0v of (,00)

@ rewrite kinetic bracket as semi-discrete particle bracket

0F 4G 06F 006G 0O0F 046G
J st 5757 = 2“’0<amf‘mf Tosr 057 )|

Z oF G 8G' oF
N wg \ 0%, (%a 0z, Ov,

(Za,va)




Discretisation of the Electrodynamic Fields

@ semi-discrete electric field Ej and magnetic field By,

Ep(z) = ) ealt) Ab(2), Bu() = ) ba(t) A%(2)
a€eZ3 acZ3
o functionals F[E| and F[B, restricted to the semi-discrete fields E}, and
By, can be considered as functions F(e) and F(b) of the finite element
coefficients

FIEy) = Fe), FIBy] = F(b)
o functional derivatives of linear and quadratic functionals F[Eh] and
F[By] can be replaced with partial derivatives of F(e) and F(b),

5F6[£Ej‘h] _ Z age(j) (Ml—l)alg Aé(l‘), 5F5[§h] _ Z a;;’b(ab) (Mg_l)aﬁ A%(.’E)

a, a,B

with mass matrices

(M)as = / AL () AL(n), (Mg = / d A2 (2) A3 (2)



Semi-Discrete Poisson Bracket

@ semi-discrete Poisson bracket

. 1 (oF 080G 0G OF
{FvG}d[xmvaaemba]_Zw(833.611_%.8U>

oF oG, _ oG oF
+za:a2[;<8va Oeq (M, )O‘BAB(%) vy ey (3, )QBA’B(%)>

FEE s (L250)

wWe OVg  Ovg

or 5 -~ a@ aG T 1 BF
+O‘;W (8% (Ml Jap R, (M, )iy 87)7 e (M1 Jas RE, (M3 1)

@ rotation matrix (decomposable into mass matrix My and incidence matrix Z)

Rog = / drA%(z) -V x A};(m), R=MT

)

77“/%



Semi-Discrete Poisson System PP

@ semi-discrete equations of motion
j:P - {xp’}l}dv fbp - {vp’,]:l}dv e= {677:[}da b= {ba,}:[}d

with discrete Hamiltonian

3 3 Il vt Zea (Mo ea(8) + 5 S ba(t) (Mo)ag bs(1)

a,B

@ Poisson system: = P(y) VH(y) with y = (2, v,, e, b)

7, 0 M, 0 0 ot 0,
d v | _ | -M1! Bg(t xp)M U (AN () TMy ! 0 OH /0w,
dtfel | o —mt? (Al(xp)) 0 M7ZT | | o7 /0e
b 0 0 ~IM;? 0 OH/0b

@ P is anti-symmetric and satisfies the Jacobi identity if div B;, = 0 and

OAL(2a)  OMy(wa) 22 .
o T o :%:(Aa(xa)>ij1ak for all a,i,7, k,

— recursion relation for splines, evaluated at all particle positions



Splitting Methods

@ Hamiltonian splitting3
H=Hp +Hp, +Hps +Hp+Hp
with
Hp =5 ()M, Hp=1e"Mie, Hp=10"Mb
@ split semi-discrete Vlasov-Maxwell equations into five subsystems
i = {v 1y} ay i ={y. Hp}a, i =1{y,Mp}a

@ the exact solution of each subsystem constitutes a Poisson map

t t
Prp:(Y0) = Yo + /{y, Hp Yadt, e p(y0) = yo + /{y,f}:lE}ddt,
0 0

3
Crouseilles, Einkemmer, Faou. Hamiltonian splitting for the Vlasov— Maxwell equations. Journal of Computational Physics 283, 224-240, 2015.
Qin, He, Zhang, Liu, Xiao, Wang. Comment on “Hamiltonian splitting for the Vlasov—Maxwell equations”. arXiv:1504.07785, 2015.

He, Qin, Sun, Xiao, Zhang, Liu. Hamiltonian integration methods for Vlasov—Maxwell equations. arXiv:1505.06076, 2015.



Splitting Methods

@ Hamiltonian splitting
H =Hp +Hp, + Hpy +Hp+ Hp

@ compositions of Poisson maps are themselves Poisson maps

@ construct Poisson structure preserving integration methods by
composition of exact solutions of the subsystems

@ first order time integrator: Lie-Trotter composition
Wi = @nEo PnBO Php © Phps © Phyps

@ second order time integrator: symmetric composition

Vs = ©h/2,E° Pr/2,B° Ph/2,p1 © Ph/2,ps © Phips

© Ph/2,p2 © Ph/2,p1 © Ph/2,B° Ph/2,E



Variational Integrators |PP

systematic way to derive structure-preserving discretisation schemes for
Lagrangian and Hamiltonian dynamical systems
preserved structures
o discrete symplectic structure
— good long-time energy behaviour (bounded error)

o discrete momenta related to symmetries of the discrete Lagrangian
— discrete Noether theorem provides discrete symmetry condition and
discrete form of conservation laws

idea

o discretisation of the Lagrangian and Hamilton's principle of
stationary action

o application of the discrete action principle to the discrete Lagrangian
to obtain discrete Euler-Lagrange equations directly

allow for straight-forward derivation of integrators for coupled systems
(e.g., coupling of particles and fields for particle-in-cell schemes)



Continuous and Discrete Action Principle

@ action: functional of a curve ¢(t) a(t) du
T v
Al = [ Lo, a(0) de I\
0

@ Hamilton's principle of stationary action: among all possible trajectories
the system follows the one that makes the action integral A stationary

oL, .. d [(OL, .
371(% Q) — o <aq(q’ q)) =0

@ approximate Lagrangian with finite differences and quadrature formula

+ _
Ld(Qna qrn+]_) e hL(qn 2q7L+1’ qn+1h qn>

0A=0

@ stationarity of the discrete action: discrete Euler-Lagrange equations
N-1
6A4=06 La(gn;Gnr1) =0 — DaLg(qn-1,qn) + D1La(qn, gni1) =0

n=0



Continuous and Discrete Action Principle PP

@ action: functional of a curve ¢(t) fakh varied disorete curves
T
A0 = [ L(at0, 1(0) a
0

@ Hamilton's principle of stationary action: among all possible trajectories
the system follows the one that makes the action integral A stationary

oL, .. d [(OL, .
371(% Q) — o <aq(q’ q)) =0

@ approximate Lagrangian with finite differences and quadrature formula

+ _
Ld(Qna qrn+]_) e hL(qn 2q7L+1’ qn+1h qn>

0A=0

@ stationarity of the discrete action: discrete Euler-Lagrange equations
N-1
6A4=06 La(gn;Gnr1) =0 — DaLg(qn-1,qn) + D1La(qn, gni1) =0

n=0



Continuous Action Principle for Vlasov-Maxwell PP

@ variations of the action

A= g/dt/ dX/deS(u X, V) [mV+ eA(t, X)) - X - [ém\vﬁ + es6(t, X)|

/dt/dxHngta: ( )

lead to the same equations of motion as the Poisson bracket upon

A
Ez—w—%t, B=VxA

— |V x A(t,2)|? ]

@ the Vlasov-Maxwell action is (weakly) gauge invariant
.A[x, v, A+ Vi, ¢] = .A[w, v, A, gb] + boundary terms

o corresponding conservation law: charge conservation

dp

8t+v j=0



Semi-Discrete Action Principle for Vlasov-Maxwell PP

@ semi-discrete action (particles, splines, time-continuous)

A=y 2 [t [mana() + eata(t,2a(®)] - 500~ [Smaoa)]® + eatnlt (o)

T
1 0A
0

2

— |V x Ap(t, :c)|2]

— same equations of motion as the semi-discrete Poisson bracket, upon
0Ap
o
@ the semi-discrete action is still (weakly) gauge invariant

Ap, [x, v, Ap + Vby, qzbh] = Ay [x, v, Ap, gbh] + boundary terms

Eh:—quh— BhZVXAh

@ corresponding conservation law: charge conservation



Gauge Invariance of the Discrete Action

@ time discretisation (e.g., Lagrange polynomials)
yh(t)|[tn,tn+1] = Z Yn,m @?(t)a Sﬁx(t) = lm((t* tn)/(thrl - tn))
m=1

@ variations of fully discrete action

tn+1 tn+1 s
) / dt Ap(t, (1)) - () = / dt Z 0Xnm - VAR(L zn(2) - Xo 1 Spiz(t) ot ()
tn i ,m=1
tnt1 s
w + / dt Y An(t,an(t)) - 6 Xpm G () + ...
b m=1
P tn+1 s
' - / At S X VAL 38(8) - X S (8 971
i, ,m=1
tn+1

S

- / dt " K VAL () - X G0 (D) + .

tn l,m=1



Gauge Invariance of the Discrete Action

@ time discretisation (e.g., Lagrange polynomials)
yh(t)|[tn,tn+1] = Z Yn,m @?(t)a @ﬁ(t) = lm((t* tn)/(thrl - tn))
m=1

@ variations of fully discrete action

tn+1 tn+1 s
) / dt Ap(t, ap(t)) - &n(t) = / dt Z X m - VARt 2n(t)) - Xyt Qpiz(t) e (1)
i i ,m=1
tnt1
w / dtZAht:zrh 0 X m P (1) + ..
tn
P tn+1
. / U X Bultn(0) - Xt 600 @70 + .

,m=1



Summary and Outlook

@ Maxwell equations
o discrete differential forms (discrete exterior calculus, mimetic discretisation):

splines, mixed finite elements, mimetic spectral elements, virtual elements
o stability: exactness and compatibility of the finite element deRham complex

@ discrete Poisson brackets and variational integrators
@ Poisson structure is retained at the semi-discrete level

@ splitting methods or variational integrators for time integration
@ gauge invariance guarantees charge conservation

@ variational integrators for degenerate Lagrangians
@ multi-step methods featuring parasitic modes or one-step methods for an extended
system drifting off the constraint submanifold
@ projection of variational integrators for the unconstrained extended system
@ very good long-time stability and conservation of energy and momentum maps

@ ongoing work

o application to the Hamiltonian Gyrokinetic Vlasov—Maxwell System (Burby et al.,
Physics Letters A, 379, pp. 2073-2077, 2015)
@ extension towards discrete metriplectic brackets for dissipative systems



Guiding Centre Dynamics IPp

Particle

@ charged particle phasespace Lagrangian

L(z, &, v,7) = (A(z) +v) - & — & S Center
@ coordinate transformation B
(8, 0) —  (X'.0,u,p) /
with p=bx v, /|B| and D:gin "

u="b-X, vy =v—ub, p=12/2|B], B=VxA, b=DB/|B
so that the Lagrangian becomes
L(g,§) = (A(X+p) + ub(X+p)) - (X+ p) + pb — 5u” — pB(X + p)
@ strong magnetic fields: neglect finite gyroradius effects

e guiding centre Lagrangian (¢ = (X%, u) and p a parameter)
L(g, q) = (A(X) + ub(X)) - X — 24 — uB(X)



Variational Guiding Centre Integrators

@ guiding centre Lagrangian
L(q,4) = (A(X) + ub(X)) - X — 3u” — pB(X), = (X', )
is degenerate (linear in velocities), that is

9L

9oy

and therefore leads to first order ordinary differential equations

@ straight-forward application of the discrete action principle leads to
multi-step variational integrators

DyLa(qi—1, qx) + D1La(qr, ge+1) =0

— we need two sets of initial data even though we have first order ODEs

— support parasitic modes, not long-time stable



Variational Guiding Centre Integrators

use discrete Legendre transform to obtain position-momentum form

pe = —DiLq(qk, qrt1)
Pet1 =  DoLg(qr, qrt1)

@ use continuous Legendre transform to obtain the second initial condition
oL
Po = 871((10) = a(q), a(q) = A(X) + ub(X)

@ one-step method for an extended dynamical system (p, g) whose
dynamics is constrained to a subspace defined by

o(p,g) =p—a(q =0 (Dirac constraint)

variational integrators will in general not satisfy the constraint

geometric interpretation for appearance of parasitic modes



Orthogonal Projection

Y3
Yo

e orthogonal symplectic projection of primary constraint, z = (p, q)

Znt1 = Yi(zn) apply variational one-step method
Zni1 = Zne1 + Q7 VO (2001) A1 project on constraint submanifold
0= ¢(2nt1)

with € the canonical symplectic matrix

(0 )



Symmetric Projection

Yo Ys

e symmetric symplectic projection of primary constraint, z= (p, q)

o =2+ Vol(z) A perturb initial data

Zkr1 = Vi(Zk) apply variational one-step method

Zip1 = 21 + QIVOT (24 1) Aer1  project on constraint submanifold
0= ¢(2k+1)-

with € the canonical symplectic matrix

°=( )



Tb

Passing and Trapped Particle 2D, h = 22,

O Q

W ~ -

)?)

‘,“&WMW‘ i \

Epr|C|t RK4 Varlatlonal RK2 Orthogonal Symmetrlc
(1 stage) Projection Projection



Passing Particle 4D, h = Z&, n, = 10°, n; = 5 x 107

"o 200000 400000 600000 800000  100000C
N 0.00 Energy (Relative Error)
0.5 le=11

-0.05 -15

_0.10 0 200000 400000 600000 800000  100000C
(R o 1.00 L) 110 Toroidal Momentum (Relative Error)

Variational Runge-Kutta, 2 stages, order 4, symmetric projection



Passing Particle 4D, h = Z&, n, = 10°, n; = 5 x 107

ole=3

0 200000 400000 600000 800000
Energy (Relative Error)

100000¢

=005

_0.10 0 200000 400000 600000 800000
(R o 1.00 L) 110 Toroidal Momentum (Relative Error)

Explicit Runge-Kutta, order 4

100000(¢
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