
G.R. Tynan, EFTSOMP WORKSHOP 2015, Lisbon, June 2015 

Recent progress towards a physics-based 
understanding of the H-mode transition 

G.R. Tynan1, I. Cziegler1, P.H. Diamond1,2, M. Malkov2 
1Center for Momentum Transport & Flow Organization (CMTFO) 

2Center for Astrophysics & Space Science 
University of California San Diego 

La Jolla CA USA 
 

A. Hubbard, J.W. Hughes, J.L. Terry, J.H. Irby 
MIT Plasma Science and Fusion Center,  

 Cambridge MA 

 
Acknowledgements:   

L. Schmitz, G. McKee, Z. Yan, M. Xu, G.S. Xu 

 



G.R. Tynan, EFTSOMP WORKSHOP 2015, Lisbon, June 2015 

Motivation: 

•  The physics of the L-H transition has been 
a key open issue 

•  Empirical Pth scalings have large 
uncertainties 
–  Can we do better w/ a physics-based model? 

• Can we learn how to control access to 
other improved confinement regimes w/o 
problems of H-mode 
–  E.g. I-mode in AUG, C-Mod 



G.R. Tynan, EFTSOMP WORKSHOP 2015, Lisbon, June 2015 

A picture of origin of L-H Transition is Emerging 

•  Equilibrium shear flows at boundary exist in L-
mode 

•  Results in finite reynolds stress that reinforces 
shear flow 

•  Flow drive from turbulence increases with L-
mode heating power 

• When flow drive rate exceeds turbulence drive 
rate (RT>1) turbulence collapses 

•  This then allows grad-P buildup (H-Mode 
pedestal) 
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Modeling & experiment suggest turbulent-driven 
ExB flow plays key role 
•  0-d Predator-prey models predicts limit cycle regime (Kim 

& Diamond PRL’03) 
–  Prey: turbulence, 
–  Predators:  zonal flow, mean flow 

•  Evidence for limit-cycle between L-mode & H-
mode:   
–  ASDEX (Zohm’94), TJ-II (Estrada’09,’15), AUG (Conway 

PRL’11), DIII-D (Schmitz PRL’13), … 
•  1-d Predator-prey model (Miki & Diamond, ‘12, ’13)  

–  key role of ZF-triggered turbulence collapse leading to 
grad-P buildup 

–  Interplay between ZF and mean (ion diamag) flows 
–  1-d front propagation effects (Schmitz’12, Estrada’15) 
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ExB flow drive leads to turbulence collapse in 
simplified model 

Manz, PoP’12, Cziegler’15 
 
See also Vianello, PPCF 2005 & 2006  
Hidalgo, Sanchez, JNM & PPCF 05,06 

Turbulent Kinetic Energy: 

Large-scale Shear Flow Kinetic Energy: 

Definitions: 

Turbulence Collapse Condition: 

 
RT ≡

P − ∂r !T
γ in −γ corr

pl( ) !K >1 Ion Diamagnetic Flow 
Survives Turbulence  

Collapse & Locks In 
 H-mode State 

 

!K = 1
2
!v2 K = 1

2
V LF 2

P = !vr !vθ
∂ V LF

∂r
!T = !vr !vθ

2 T = !vr !vθ V LF

γ in = γ in (∇n,∇T , ′VE )

V LF = VExB + Vi
dia

 

∂ !K
∂t

= γ in −γ corr
pl( ) !K − P − ∂r !T

∂K
∂t

= P − ∂rT −νLFK
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Leads to closed form reduced predator-prey model 

• Model closed with few key assumptions 
(Kim&Diamond PRL’03) 

 

• q ∝− !v⊥
2 τ corr∇pi

•Vi,dia ∝∇pi

• !vr !vθ ∝
!v⊥
2 ′VExB

LF

1+α ′VE
2
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Recent work on C-Mod validates key assumption in 
predator-prey model 

• Model (Kim&Diamond PRL’03) was closed 
with few key assumptions 
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1-D Reduced Model Shows L-H Transition Dynamics 

•  Turbulent-driven m,n=0,0 
ExB flow builds up & 
regulates turbulence 

•  ZF production, P, grows 
with heat flux 

•  Turbulence collapse when 
flow drive exceeds growth 
rate (RT>1) 

•  grad-Pion ExB flow then 
builds; turbulent-driven 
m,n=0 ExB decays 

•  Strong grad-Pion Mean 
Flow (MF) locks-in H-mode  

Miki & Diamond PoP’12. 

RT            

P        
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A picture of origin of L-H Transition is Emerging 

•  Equilibrium shear flows at boundary exist in L-
mode 

•  Results in finite reynolds stress that reinforces 
shear flow 

•  Flow drive from turbulence increases with L-
mode heating power 

• When flow drive rate exceeds turbulence drive 
rate (RT>1) turbulence collapses 

•  This then allows grad-P buildup (H-Mode 
pedestal) 
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A Shear Layer Sustained by Equilibrium Exists at LCFS 

TEXT   Ritz PF’84 

SOL 

LCFS 
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Sheared ExB flow tilts & stretches eddies 

TEXTOR Shesterikov, Xu et al PRL 2013 

Eddy tilting correlates Vr and Vθ  
   èNon-zero Reynolds Stress 
   è Turbulence can drive sheared flow 

Weak sheared ExB Strong sheared ExB 



G.R. Tynan, EFTSOMP WORKSHOP 2015, Lisbon, June 2015 

Spectral representation:  L-mode turbulence established 
from  energy input, nonlinear transfer & dissipation 
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Weakly heated L-mode experiments confirm this picture 

See M. Xu PRL ’12 for flow drive physics & M. Xu PoP’10 for technique 
See K. Zhao, PRL’06, PPCF’11 for identification of m/n=0/0 structure 
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Spectral representation:  L-mode turbulence established 
from  energy input, nonlinear transfer & dissipation 
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Power transfer to shear flow increases with plasma heating 
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Nonlinear shear flow drive becomes important at 
higher heat flux 

Cziegler, et al, NF 2015 (accepted), 
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•  Flow drive from turbulence increases with L-
mode heating power 

• When flow drive rate exceeds turbulence drive 
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Further heating leads rate of flow drive exceeding rate of 
energy input into turbulence 
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At this point, turbulence cannot be sustained…and thus 
turbulence amplitude collapses 
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!vr !vθ VExB
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γ eff !v⊥
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mid-k Turbulent 
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RECENT EXPERIMENTS SHOW THIS BEHAVIOR 

•  EAST (Manz et al PoP’12, GS Xu et al NF’14) 
•  TEXTOR (Shesterikov et al PRL’13) 
• DIII-D (Yan et al PRL’14) 
• ALCATOR C-Mod (Cziegler, PPCF’14, NF’15) 
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L-H Transition When m,n=0 LF ExB Drive Exceeds Energy Input 
Rate into Turbulence 

vr vθ ′VZF ≈ γ eff −γ decorr( ) v⊥2

Manz et al, PoP Aug 2012 

SOL
inside
LCFS

⎧
⎨
⎩

•  Turbulence Energy & 
LF ExB Energy 
Increase 

•  Power Transfer 
Increases 

•  Power Transfer Grows 
to ~Equal Turbulent 
Energy Input Rate 

•  L-H Transition Occurs 
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Turbulence & LF m,n=0 ExB Energy Exhibit One Orbit of Phase 
Space Before the L-H Transition 

•  Turbulence Increases 
in L-mode (I) 

•  Power Transfer 
Increases the LF Shear 
Flow (I-II) 

•  Flow Saturates 
Turbulence (II-III) 

•  Transition to H-mode 
State Locks in LF Shear 
Flow 

•  Strong radial 
dependence 

Manz et al, PoP Aug 2012 EAST 

L-H Transition Appears to be Degenerate  
Case of Multi-orbit LCO Regime 
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TEXTOR: Energy Transfer During 
Biased L-H Transition 
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Turbulent-driven ExB Flow Plays Roll in Biased H-
mode Transition 

TEXTOR  Shesterikov, Xu et al, PRL 2013 

 

vr vθ ∝ ′VE
→  Negative Viscosity

For lower values of  
shearing 

Stress reinforces ExB 
flow 
 
Stress saturates and 
decreases for larger 
values of stress 
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Biased H-mode Onset Occurs When Power Transfer 
to LF ExB Shear Flow Exceeds Threshold 

TEXTOR  Shesterikov, Xu et al, PRL 2013 

Biased H-mode Transition 
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DIII-D:  L-H Transition Studies via 
BES velocimetry 
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Z. Yan et al, PRL 2014 



G.R. Tynan, EFTSOMP WORKSHOP 2015, Lisbon, June 2015 

Z. Yan, submitted 2013 Z. Yan et al, PRL 2014 
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Z. Yan et al, PRL 2014 
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Z. Yan, submitted 2013 
Z. Yan et al, PRL 2014 
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C-Mod:  L-H Transition Studies via 
He-GPI velocimetry 
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Observe a “kick” in Vpol at L-H transition 

Cziegler et al PPCF’14 

LCFS 



G.R. Tynan, EFTSOMP WORKSHOP 2015, Lisbon, June 2015 

Spatial localization of flow drive & 
turbulence quenching 

Cziegler, NF’15 
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Time sequence of transition 

Tynan, Cziegler et al, submitted 



G.R. Tynan, EFTSOMP WORKSHOP 2015, Lisbon, June 2015 

∂
∂t
K +νZFK = P − ∂rT

Flow drive is consistent with observed flow 

Cziegler, PPCF ’14 
 
ExB Flow Power Balance: 

C-Mod  

Flow drive also consistent with estimated damping 
(including toroidal effects) in EAST (GS Xu NF ‘14) 

Flow Damping  
Determined 
From Steady-state  
L-mode Experimental 
Value 
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Turbulence simulations now available… 

• Chone’ et al PoP’14 
•  Park et al PoP’15 
• Nielsen et al, ArchivX, submitted ‘15 
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Turbulence simulations now available… 

• Chone’ et al PoP’14 
–  “The transition scenario from one regime to 

another is the following: increasing the input 
power leads to more violent avalanches, 
triggering strong stabilising ZF. The resulting 
steepening of the pressure gradient further 
generates a sheared mean flow via the 
neoclassical friction. If the shear becomes 
strong enough to prevent a new burst, the 
barrier locks on because of this positive feed- 
back loop between pressure gradient and 
poloidal flow, mediated by neoclassical 
terms.”  
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Turbulence simulations show same sequence 

Park et al, PoP 2015, RBM Model (Improvement Needed!) 

•  Chone’ et al PoP’14 state that turbulent-driven 
    ExB flow, together with mean flow, plays key role 
    in edge barrier formation  

RT>1 Yields  
Turbulence 
Collapse 

tR tR        

 
AFTER 
Turbulence 
Quench 

ω ExB > γ lin

ω ExB > γ lin
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A picture of L-H Transition is Emerging 

SAME PICTURE IN  
 

 MULTIPLE EXPERIMENT 
 

 REDUCED MODELS, AND  
 

 TURBULENT SIMULATIONS 
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Linking Microscopic Turbulence Physics to 
Macroscopic System Behavior 
 

 - AUG Results Show Ion Heat Flux is Key 
 

 - Motivates Modified 1-D Predator-    
   Prey Model (Malkov et al ’15) 
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L-H transition appears related ion heat flux at LCFS 

AUG, Ryter, NF’14 
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Extend Predator-prey to Separate e-ion Channels 

Malkov, PoP’15 
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Model with Hi/i+e (n)~n gives minimum in Pth(n) 

Ryter NF’13 

Key Parameter: 
e-i heating mix AUG 

Pth  

Hi/i+e(n)  

Malkov ‘15 

•  Result requires Hi/i+e (n) ~n to yield minimum in Pth(n)  
•  Normalized e-i equilibration time                important 
•  Ion heat flux at LCFS is key; linked to transport 
    across plasma column 

   (n.b. see also X. Wu et al, NF ’15 for very recent similar work) 

τ e−i
coll /τ Ee



G.R. Tynan, EFTSOMP WORKSHOP 2015, Lisbon, June 2015 

Link between e-i equilibration and minimum in Pth ? 

•  Pth minimum correlated 
with LOC-SOC 
transition 

•  LOC-SOC due to 
increased e-i collisional 
coupling 

•  Suggests Pth minimum 
related to e-i coupling 

Malkov’15 
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Summary of collisionally coupled model results 

•  Pthr(n) grows monotonically in both pure ion          
(Hi/i+e=1) and pure electron (Hi/i+e=0) heating 
regimes with collisional coupling 

•  The descending low-density branch with distinct 
minimum, results from combined increased 
electron-to-ion collisional heat transfer and 
growing fraction Hi/i+e of heat deposited directly  to 
ions 

•  Upturn in Pthr due to increase of shear flow 
damping (trapped-passing ions, neutrals,…) 

•  Finite heating mix, Hi/i+e, essential for core heat 
transport to build edge grad-Pion  

•  Many mechanisms to give Hi/i+e>0 

Malkov PoP15 
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Open Questions 

•  How to Reconcile w/ lack of ZF in AUG (Ryter, EPS’15)? 
•  Access to more attractive improved confinement regimes 

(e.g. I-mode) (Cmod, AUG) 
•  Significance (or lack thereof) of GAMs in turbulent-driven 

L-H transition model (Scott’04, Hallatschek’07, Kobayashi 
PRL’13, Itoh’14) 

•  H-mode Access in Collisionless (ITER) regime 
•  Origin of grad-B x B favorable power threshold (Fedorczak 

& Diamond’12) 
•  Effect of divertor configuration on access (Hughes TTF’15) 
•  Isotope effect (e.g. Ryter’13) 
•  Origin of co/cntr rotation effect on Pth (McKee’09) 
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Access to I-mode related to nonlinear GAM drive 

Cziegler et al, PoP’13  

L-mode – I_mode transition 
related to GAM drive exceeding  
GAM damping rate, i.e.  
 
 
 
 
Reminiscent of L-H Transition! 

γ GAM
NL > 4

7
ν ii

q

γ GAM
NL > 4

7
ν ii

q
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What about GAM damping effects on Vθ ? 

νZF ~ (1+ 2q
2 )ν iiNeoclassical Damping Rate given by: 

Results in a Reynolds Force That is too Small 
To explain Observed Vθ Transient; Kobayashi PRL’13, Itoh’14 
 
RESPONSE: 
•  ZFs grow/GAMs die as L-H is Approached (McKee’, M.Xu PRL’12) 
•  EAST, HT-6M Show That Reynolds Stress IS Consistent  
    w/ ExB Shear Flow & neoclassical Damping  
    (GS Xu, IAEA’04, GS Xu, PRL’11)  
•  C-Mod shows that flow transient consistent 
    with stress & empirically derived flow damping  
    (Cziegler PPCF’14)  
 

Further Quantitative Experiment Study, Models/
Simulations with Toroidal Flow Needed to Resolve 
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Extending reduced model to collisionless 
regime (ITER relevant) 

•  Predator-prey model:  ZF damping is collisional 
–  Need ZF instability è turbulence è ion heating? 

•  Anomalous heat exchange important 
(Zhao&Diamond’13) 
–  Heat exchange linked to fluctuation intensity-dependent 

coupling 
–  Multiple pathways possible 

• CTEM è <J.E> dissipation è ion heating 
•  ITG-driven turbulent dissipation è ion heating 
•  ZF dissipation è ion heating 
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Possible Origin of grad-BxB Effect 

…But result depends on detailed poloidal mode distribution 
Fedorczak, Diamond et al ‘13 

Magnetic shear 
& ExB shear tilting 
 ADD 

Magnetic shear 
& ExB shear tilting 
Counteract 

•  Magnetic-shear induced tilting competes/ 
       complements ExB shearing 
•  Up-down asymmetry determines dominant effect 
•  RESULT:  Stronger sheared ExB in favorable 
     configuration 
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Conclusions 

•  Microturbulence and reduced model studies point to 
origin of H-mode: 
–  Increased heating leads to enhanced turbulent Reynolds stress 

driven sheared ExB flows  
–  Transition initiated when rate of turbulent-ExB shear flow drive 

exceeds turbulent energy input rate 
–  Results in turbulence collapse that allows edge pedestal to grow, 

locking in H-mode 

•  Turbulence simulations capture same picture 
•  Macroscale studies suggest ion heat flux at LCFS key 
•  Motivated modified predator-prey model that 

captures Pthr(n) dependence 
•  Many Open Issues:  ITER Collisionless regime,grad-BxB 

effect, Isotope effect, role of GAMs, I-mode vs H-
mode, ….  


