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Motivation

I-phase

GAM

Type-III ELMs

H-mode

[G. Conway et al., PRL 2011]
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Motivation

I-phase

GAM

Detachment:

 X-point fluctuations

 Divertor oscillations

Type-III ELMsSOL-transport

H-mode

[G. Conway et al., PRL 2011]

I-mode
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Outline

 The I-phase at low density: coexistence with GAM

 I-phase and its appearance in the SOL

 I-phase and divertor detachment

 I-phase vs. type-III ELMs

 I-phase vs. I-mode

 Summary and discussion
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The I-phase at low density

Definition of I-phase (Conway 2011): 

 Turbulence pulsating at around 2–4 kHz
 L-I transition sharp, I-H transition soft
 pulsing extends across the plasma edge into SOL
 Occurs at low densities (< 5 1019 m-3)

[Conway et al., PRL 2011]
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The I-phase at low density

Definition of I-phase (Conway 2011): 

 Turbulence pulsating at around 2–4 kHz
 L-I transition sharp, I-H transition soft
 pulsing extends across the plasma edge into SOL (r = 0.96-1.02)
 Occurs at low densities (< 5 1019 m-3)

[G. Conway et al., PRL 2011]
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Definition of I-phase (Conway 2011): 

 Turbulence pulsating at around 2–4 kHz
 L-I transition sharp, I-H transition soft
 pulsing extends across the plasma edge into SOL (r = 0.96-1.02)
 Occurs at low densities (< 5 1019 m-3)

H-mode

The I-phase at low density

[G. Conway et al., PRL 2011]
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Possible role of I-phase in LH transition (low density)

Turbulence suppression by shear:

 Turbulence correlation rate:

 Mean flow shearing rate:

 Oscillatory flow shearing rate:

Distinction by turbulence 
suppressor:

 I-phase: oscillatory flow

 H-mode: mean flow

[Conway et al., PRL 2011]
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The I-phase and its appearance in the SOL

Measurements with the X-point probe (Müller 2014): 

 2 Isat-pins (Mach probe), 1 pin for characteristics
 Reciprocates horizontally 2-5 cm below the X-point
 Covers LFS, private flux region and HFS

[M. Tsalas et al., J. Nucl. Mater. (2005)]
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The I-phase and its appearance in the SOL

Observations (Müller 2014): 

 Oscillations in parallel Mach-number 
(X-point probe)

 Higher harmonics in Isat-signal

 Nice limit cycle between low-f (anti-
ZF) and high-f (turb.): type J (ccw)

 Pulsation sometimes absent      
(non-linear phenomenon)

[Mueller et al., PoP 2014]
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The I-phase and its appearance in the SOL

[Mueller et al., PoP 2014]

Observations (Müller 2014): 

 Oscillations in parallel Mach-number 
(X-point probe)

 Higher harmonics in Isat-signal

 Nice limit cycle between low-f (anti-
ZF) and high-f (turb.): type J (ccw)

 Pulsation sometimes absent      
(non-linear phenomenon)
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The I-phase and its appearance in the SOL

Correlation of Doppler reflectometer with edge density profiles (Li-BES):

 Pulsation in density signal strongest slightly inside the separatrix
 Propagation of pulse to the outside (200-500 m/s)
 Density gradient crashes during I-phase (see M. Cavedon: Er profile modulated)

Li-BES
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I-phase and detachment

Classification of detachment during density ramps:

 Low density: attached
 Onset of detachment (OS)
 Fluctuating state (FS)
 Complete detachment (CDS)

[S. Potzel et al., NF 2014]

Increasing density
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I-phase vs. X-point fluctuations: not the same

X-point fluctuations:

 Visible in AXUV diode
 Sudden onset
 Broad peak around 5.5 kHz
 Appears when inner divertor

is already detached 

I-phase:

 Visible in AXUV diode
 Sudden onset
 Localized peak around 2 kHz
 Appears close to LH threshold

#27100 #29302
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I-phase vs. divertor oscillations: not the same

Divertor oscillations:

 Visible in AXUV diode
 Jumps between 2 states
 One state is fluctuation state
 Frequency f ~ 50-200 Hz

I-phase:

 Visible in AXUV diode
 Sudden onset
 Localized peak around 2 kHz
 Appears close to LH threshold

#27101 #29302

[S. Potzel et al., JNM 2013]
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A typical I-phase at medium density

The L-I transition at medium density:

 Drop of divertor current
 Oscillation in poloidal velocity and fluctuation 

#29302

L-mode

I-phase



G. Birkenmeier 17EFTSOMP Workshop, Lisboa 2015

A typical I-phase at medium density

The L-I transition at medium density:

 Drop of divertor current
 Oscillation in poloidal velocity and fluctuation
 Clockwise limit-cycle in phase space 
 Zonal flow-turbulence interaction? 

#29302
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A typical I-phase at medium density

Magnetic signal is strongly correlated with Doppler:

 𝐵q

 𝐵q

 𝐵q



G. Birkenmeier 19EFTSOMP Workshop, Lisboa 2015

A typical I-phase at medium density

Magnetics signal shows harmonics in spectrogram:

L-I transition I-L transition

H-mode

 𝐵q

 𝐵q
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The magnetic structure of the I-phase

Magnetic pulse propagates from X-point along HFS to top:
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The magnetic structure of the I-phase

Correlation analysis reveals:

 m=1 mode structure at Dt = 0 

 Propagation velocity ~20 km/s in ion 
diamagnetic direction

 Dynamics reverses in USN configuration
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The magnetic structure of the I-phase

Magnetics signal shows higher harmonics in  𝐵q but not in  𝐵𝑟:

L-I transition

 𝐵q

 𝐵r

 𝐵r

 𝐵q
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The magnetic structure of the I-phase

Smooth transition to spiky and intermittent phase: precursors in  𝐵𝑟 ! 

 𝐵q

 𝐵r
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I-phase vs. Type-III ELM

Definitions:

I-phase (Conway 2011): 

 Turbulence pulsating at around 2–4 kHz
 L-I transition sharp, I-H transition soft
 pulsing extends across the plasma edge into SOL

Type-III ELM (Zohm 1996):

 Coherent magnetic precursor (f= 50-100 kHz)
 Mode numbers of precursor n=5-10, m=10-15
 ELM frequency decreases with heating power

[H. Zohm et al., PPCF 1996]
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I-phase vs. Type-III ELM

Smooth transition from LCO to Type-III ELM:

 IM-mode in DIII-D (Colchin et al., PRL, 2002)
 I-phase at EAST (G.S. Xu/N. Yan, PPCF, 2014)
 M-mode at JET (E. Solano, EPS, 2013)

[G.S Xu et al., PPCF (2014)]

[Colchin et al., PRL (2002)]
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I-phase vs. Type-III ELM

late

Precursor properties measured with standard reflectometry in late I-phase:
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I-phase vs. Type-III ELM

Precursor properties measured with standard reflectometry in early I-phase:

early



G. Birkenmeier 28EFTSOMP Workshop, Lisboa 2015

I-phase vs. Type-III ELM

Precursor properties measured with standard reflectometry:

 Small amplitudes in early I-phase

 Located close to separatrix

 Large amplitudes in late I-phase

 Already visible in reflectometer signal 
before it appears in  𝐵𝑟

Early and late phase qualitatively identical

early

late
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The I-phase: intermediate phase between L- and H-mode

Definition of I-mode: 

 Improved heat confinement (like H-mode), low particle 
confinement (like L-mode)

 Appears only in unfavourable B x grad B configurations 
 no oscillations 

Definition of I-phase (Conway 2011): 

 Turbulence pulsating at around 2–4 kHz
 L-I transition sharp, I-H transition soft
 pulsing extends across the plasma edge into
 Occurs at low densities (< 5 1019 m-3)
 Does not occur in unfavourable B x grad B configurations

I-phase vs. I-mode

[R. McDermott et al., PoP (2009)]
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The I-phase: intermediate phase between L- and H-mode

Definition of I-mode: 

 Improved heat confinement (like H-mode), low particle 
confinement (like L-mode)

 Appears only in unfavourable B x grad B configurations 
 no oscillations (but spikes, GAM and WCM!)

Definition of I-phase (Conway 2011): 

 Turbulence pulsating at around 2–4 kHz
 L-I transition sharp, I-H transition soft
 pulsing extends across the plasma edge into
 Occurs at low densities (< 5 1019 m-3)
 Does not (clearly) occur in unfavourable B x grad B 

configurations

I-phase vs. I-mode

[R. McDermott et al., PoP (2009)]
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Summary and open questions

The I-phase at AUG:

 Coexist with GAMs at low densities

 Is strongest slightly inside the separatrix and density response propagates outwards

 Exhibits strong magnetic activities (poloidal propagation, m=1 structure, precursors)

I-phase and type-III ELMs show similarities:

 Appear close to L-H transitions

 Frequency decreases with larger pedestal pressure/heating

 Exhibit precursors with frequencies of about 50-100 kHz

Are type-III ELMs and I-phase the same? IM-mode = I-phase = M-mode?
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LIH vs. HIL transitions at medium densities

I-phase in the power density plane:

 I-phases at LI and IL look very similar

 LI transition close to LH threshold

 High density range not accessible at   
LI transition

 Density at IL transition much higher

LH threshold I-phases at IL 
transition

I-phases at LI 
transition
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I-phase vs. Type-III ELM

Magnetics in I-phase: No precursor at the beginning

L-I transition 𝐵q

 𝐵r
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I-phase vs. Type-III ELM

Magnetics in I-phase: Smooth transition to larger spikes

L-I transition

 𝐵q

 𝐵r
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I-phase vs. Type-III ELM

Magnetics in I-phase: Clear precursor later

I-phase pulsation = Type-III ELM?

 𝐵q

 𝐵r
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I-phase vs. Type-III ELM

Precursors in poloidal correlation reflectometry (#31165):

 𝐵r

 𝐵q
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I-phase vs. Type-III ELM

Precursors in poloidal correlation reflectometry (#31165):

 𝐵r

 𝐵q
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I-phase vs. Type-III ELM

Precursor properties measured with poloidal correlation reflectometry:

[D. Prisiazhniuk]

f = 55 kHz

v = 12 km/s

k = 0.28 cm-1

f = 55 kHz

v = 12 km/s (e-diam.)

k = 0.28 cm-1
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Summary: I-phase

Definition of I-phase (Conway 2011): 

 Turbulence pulsating at around 2–4 kHz
 L-I transition sharp, I-H transition soft
 pulsing extends across the plasma edge into SOL (r = 0.96-1.02)
 Occurs at low densities (< 5 1019 m-3)

#29302

L-mode

I-phase
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General discussion

Open questions:

 Are I-phase and type-III ELMs the same?

 Zonal flows active or Er given by pressure gradient relevant?

 What is the role of the GAM?

 What is the role of blobs? Passive or active?

 Why does I-phase not clearly appear in unfavourable B x grad B drift?

 Relation to theory (Frequency scaling with b , precursors,…)?

 Is there a similarity of I-phase and type-I ELMs dynamics?

 Poloidal flow in general given by neoclassics?

 …
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General discussion

Next steps:

 Document the I-phase frequency (and duty cycle) dependence and comparison to 
theory

 Find the conditions when LCO and threshold behavior occurs

 Clarify the role of precursors

 Clarify the role of neoclassics and zonal flows/GAMs

 …
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What’s published about I-phase at AUG

Differences between the published shots:

 No nice/clear H-modes (Garrard)
 Garrard: No limit cycle. Stefan: Limit cycle!
 Garrard: GAM. Stefan: No GAM?
 Magnetic signal looks different (important?)

[Mueller et al., PoP 2014] [Conway et al., PRL 2011]
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What’s published from other devices

M-mode on JET (Solano, EPS 2013):
 Magnetic oscillation after LH transition (few kHz)
 m=1, n=0, up-down symmetric
 Higher harmonics in Mirnov coils
 Not electrostatic, but scaling with poloidal Alfven speed
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What’s published from other devices

M-mode on JET (Solano, EPS 2013):
 Magnetic oscillation after LH transition (few kHz)
 m=1, n=0, up-down symmetric
 Higher harmonics in Mirnov coils
 Not electrostatic, but scaling with poloidal Alfven speed

AUG
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What’s published from other devices

M-mode on JET (Solano, EPS 2013):
 Magnetic oscillation after LH transition (few kHz)
 m=1, n=0, up-down symmetric
 Higher harmonics in Mirnov coils
 Not electrostatic, but scaling with poloidal Alfven speed

AUG

JET
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What’s published from other devices

M-mode on JET (Solano, EPS 2013):
 Magnetic oscillation after LH transition (few kHz)
 m=1, n=0, up-down symmetric
 Higher harmonics in Mirnov coils
 Not electrostatic, but scaling with poloidal Alfven speed

AUG

AUG
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First new results

Li-BES, cross-correlation UFSR, phase fluctuations

Comparison: Li-BES and Ultra Fast Sweeping Reflectometer

Separatrix

Density response of 2 kHz oscillations:

 localized slightly inside the separatrix

 Width: ~1.5 cm
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LIH vs. HIL transitions

I-phase frequency scaling:

 Frequency depends on density!

 Or on temperature?

 High density range not accessible at   
LI transition

 Density at IL transition much higher 
BUT temperature lower

Plasma pressure (b) is the same 
at IL and LI transition!

Frequency depends on b?        

(to be checked)

I-phases at IL 
transition

I-phases at LI 
transition
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I-phase vs. Type-III ELM

Magnetics in I-phase: No precursor in early phase
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I-phase vs. Type-III ELM

Magnetics in I-phase: Clear precursor in late phase
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I-phase in different configurations

I-phase:

 No I-phase in USN

 Switched on in DN

 Switched off by MPs    
(density pump-out) 

#31633
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What’s published from other devices

Cheng/Dong at HL-2A:

Type-Y LCO: 

 CW
 Close to LI threshold
 No IH transition

Type-J LCO:

 CCW
 Close to IH threshold
 Always related to LH transition

IAEA (not shown): 
 type-Y is ZF-turbulence LCO
 type-J is background-turbulence LCO
 LI transition by ZF, IH by background Er
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What’s published from other devices

Schmitz at DIII-D (NF 2014):

 Zonal flow triggers LCOs initially 
(90° between n and shear rate)

 Background shear takes over later 
(180°) and sustains H-mode

 Consistent with a two predator (ZF 
and background shear), one-prey 
(turbulence) LCO model
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What’s published from other devices

Kobayashi at JFT-2M:

Zonal flow irrelevant in 
LCO:

 Reynolds-stress 
drive too weak

 Radial wave length 
too long
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L- and H-mode

L-mode:

 Low confinement
 High turbulence level
 Shallow gradients

H-mode:

 High confinement
 Low turbulence level
 Steep gradients (pedestal!)
 Edge transport barrier

[P. Schneider, PhD Thesis, LMU 2012]
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L- and H-mode

L-mode:

 Low confinement
 High turbulence level
 Shallow gradients

Turbulence in H-mode 
“suppressed” by background 

flow shear:

u = -Er/B

dru = -drEr/B

H-mode:

 High confinement
 Low turbulence level
 Steep gradients (pedestal!)
 Edge transport barrier

[J. Schirmer et al., NF (2006)]
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Turbulence “suppression” in H-mode

Turbulence in H-mode 
“suppressed” by background 

flow shear:

u = -Er/B

dru = -drEr/B

Radial size of eddy decreased
by vortex thinning

Turbulent transport reduced
[P. Manz et al., PRL (2009)]

Turbulent eddy in a shear field:
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Turbulence “suppression” in H-mode

Turbulence in H-mode 
“suppressed” by background 

flow shear:

u = -Er/B

dru = -drEr/B

Radial size of eddy decreased
by vortex thinning

Turbulent transport reduced

Low shear: L-mode High shear: H-mode

[X. Garbet et al., NF (2010)]
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What happens between L- and H-mode?

Typical LH transition (low density):

L-mode

H-mode

Type –I ELMs
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What happens between L- and H-mode?

Typical LH transition (low density):

L-mode

H-mode
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What happens between L- and H-mode?

Typical LH transition (low density):

 Doppler reflectometry

 Doppler shift:

 Density fluctuation amplitude:

[G. Conway et al., PPCF (2005)]

#29302

L-mode

I-phase
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What’s published from other devices?

Other devices see basically 
the same:

 Limit-cycle oscillations  
(DIII-D, MAST, HL-2A, JFT-
2M,TJ-II, NSTX,…)

 IM-mode (DIII-D)

 I-phase (EAST)

 M-mode (JET)

 Dithering (AUG)

 etc.

[L. Schmitz et al., PRL 2012] [G. S. Xu et al., NF 2014]
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Theoretical models

Aim: Description of the I-phase oscillation

Hope: Understanding of I-phase will help to understand the LH transition
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Theoretical models

Aim: Description of the I-phase oscillation

Hope: Understanding of I-phase will help to understand the LH transition

Example for a “minimal” model:

 Turbulence increases with growth rate g (depends on type of turbulence)

𝜕𝑡  𝑛2 = 𝛾  𝑛2

[P. Diamond et al., PRL 1994]
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Theoretical models

Aim: Description of the I-phase oscillation

Hope: Understanding of I-phase will help to understand the LH transition

Example for a “minimal” model:

 Turbulence increases with growth rate g (depends on type of turbulence)

𝜕𝑡  𝑛2 = 𝛾  𝑛2

 Turbulence can drive a poloidal flow (zonal flow) via the Reynold stress

𝜕𝑡 𝑉𝜃 = −𝜕𝑟  𝑉𝜃  𝑉𝑟

[P. Diamond et al., PRL 1994]

Zonal flow 

(also GAMs)

Reynolds 

stress
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Theoretical models

Aim: Description of the I-phase oscillation

Hope: Understanding of I-phase will help to understand the LH transition

Example for a “minimal” model:

 Turbulence increases with growth rate g (depends on type of turbulence)

𝜕𝑡  𝑛2 = 𝛾  𝑛2

 Turbulence can drive a poloidal flow (zonal flow) via the Reynold stress

 Viscosity (collisions, geodesic transfer, Landau damping,…) can damp the flow

𝜕𝑡 𝑉𝜃 = −𝜕𝑟  𝑉𝜃  𝑉𝑟 − 𝜇 𝑉𝜃

[P. Diamond et al., PRL 1994]

Zonal flow 

(also GAMs)

Reynolds 

stress

Damping
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A minimal I-phase model

Energetic interaction between zonal flow and turbulence:

𝜕𝑡𝒩 = 𝛾𝒩 − 𝛼1𝒩𝑈

𝜕𝑡𝑈 = 𝛼2𝒩𝑈 − 𝜇𝑈

Two coupled equations:

 𝒩 =  𝑛2 : turbulence energy

 𝑈 = 𝜕𝑟𝑉𝜃
2: shear flow intensity

 𝛾, 𝛼1, 𝛼2, 𝜇 are (heuristic) parameters

Lotka-Volterra type of equations
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A minimal I-phase model

Two coupled equations:

 𝒩 = turbulence energy (rabbits)

 𝑈 = shear flow intensity (foxes)

 𝛾, 𝛼1, 𝛼2, 𝜇 are parameters

Lotka-Volterra type of equations: predator-prey oscillations

Energetic interaction between zonal flow and turbulence:

𝜕𝑡𝒩 = 𝛾𝒩 − 𝛼1𝒩𝑈

𝜕𝑡𝑈 = 𝛼2𝒩𝑈− 𝜇𝑈
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A minimal I-phase model

Solutions:

a) Limit-cycle oscillation (phase shift!)
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A minimal I-phase model

Solutions:

a) Limit-cycle oscillation (phase shift!)

b) One step transition (𝝁 = 𝟎):
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A minimal I-phase model

Solutions:

a) Limit-cycle oscillation (phase shift!)

b) One step transition (𝝁 = 𝟎):
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Other I-phase models

There are a lot of variations!

 Multiple predators (diamagnetic flow, zonal flow, GAMs,…)

 Spatially dependent (full radial profile), electron/ion heating

[M. Sasaki et al., NF 2012]

[K. Miki et al., PoP 2012]

[M. Malkov et al., PoP 2015]
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Other I-phase models

There are a lot of variations!

 Multiple predators (diamagnetic flow, zonal flow, GAMs,…)

 Spatially dependent (full radial profile)

 Limit-cycle oscillations without zonal flows (type-III ELMs)

 Bifurcation model for Te and Er applied to AUG data

 Predator-prey model derived from momentum transport equations

 etc.

Problem of all of these models: 

Equations contain free parameters limited predictive capabilities

[M. Sasaki et al., NF 2012]

[K. Miki et al., PoP 2012]

[Itoh et al., PRL 1991]

[H. Zohm et al., PRL 1994]

[G. Staebler et al., PPCF 2015]

[M. Malkov et al., PoP 2015]



G. Birkenmeier 74EFTSOMP Workshop, Lisboa 2015

Success of models

Some works seem to confirm that zonal flows trigger the LH transition:

LH transition happens when:

i.e. when the energy transfer 
from turbulence to flow

exceeds the growth of turbulence

with turbulent energy .

[P. Manz et al., PoP 2012]

[Z. Yan et al., PRL 2014]

EAST

DIII-D
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Success of models

Other works don’t agree with pure 
zonal flow models:

 Limit-cycle in wrong direction

 Explanation: mean flow 𝐸𝑟 ≈
𝛻𝑝

𝑒𝑛
drives IH transition

 Reynolds stress drive too weak and 
radial wavenumber too large

 Explanation: mean flow 
involved in I-phase oscillations

[J. Cheng et al., NF 2014]

[T. Kobayashi et al., PRL 2014]

HL-2A

JFT-2M


