Nonlocal transport in the scrape-off layer

P. Manz1,2, F. Fischer1, G. Birkenmeier1,2, D. Carralero2, G. Fuchert2, S. Marsen3, B. Nold4, M. Ramisch4, T.T. Ribeiro2, B.D. Scott2, U. Stroth2,1, R.S. Wilcox5

1Technische Universität München, Germany
2Max-Planck-Institut für Plasmaphysik, Garching, Germany
3Max-Planck-Institut für Plasmaphysik, Greifswald, Germany
4Institut für Grenzflächenverfahrenstechnik und Plasmatechnologie, Universität Stuttgart, Germany
5Oak Ridge National Laboratory, OakRidge TN, USA

EFTSOMP Workshop, Lisbon, 30.6.2015
Why turbulence in the far SOL?

• Conditional averaged picture at the shear layer
• Statistics of blob trajectories
• Relation between turbulence spreading and blob generation
• Results from HSX, TJ-K, WEGA
Blob generation

theory:

- Interchange instability generates radial extended structures (streamer)

- Shear flow breaks streamer up into blobs
• delta-f gyrofluid code
• electron and ion density (-> potential)
• perpendicular and parallel ion and electron temperature (finite Larmor radius effects)
• parallel ion dynamics (ion sound waves)
• electromagnetic (magnetic fluctuations)
• solves equilibrium (global)
• 3D
• transtion from closed to open field lines (sheath connected boundary conditions) at separatrix
Deterministic cartoon

Blob generation
- blobs merge
- exchange particles and energy
- break up

(turbulence spreading)

O. Gürcan et al. Phys. Plasmas 2005
Blob definition:

Identify possible blobs at every time step:

(i) positive density perturbations exceeding the standard deviation by a factor of 2.5

(ii) has to fulfill (i) over a connected spatial extent
 (11 points in the simulation grid ~ 5mm)

(iii) track possible blobs for a least 50 time steps (~25 µs)
Statistics of blob trajectories

- Blob trajectory density (a.u.)
- Skewness

Spreading model

mean free energy

\[
\frac{1}{2} \frac{\partial \langle n \rangle^2}{\partial t} = - \frac{\partial}{\partial r} \left(\langle n \langle \tilde{v}_r \tilde{n} \rangle \rangle \right) + \langle \frac{\partial n}{\partial r} \rangle \langle \tilde{v}_r \tilde{n} \rangle.
\]

turbulent energy

\[
\frac{1}{2} \frac{\partial \langle \tilde{n}^2 \rangle}{\partial t} = - \langle \frac{\partial n}{\partial r} \rangle \langle \tilde{v}_r \tilde{n} \rangle - \frac{1}{2} \frac{\partial}{\partial r} \langle \tilde{v}_r \tilde{n}^2 \rangle.
\]
Spreading model

mean free energy

\[
\frac{1}{2} \frac{\partial \langle n \rangle^2}{\partial t} = - \frac{\partial}{\partial r} \left(\langle n \rangle \langle \tilde{v}_r \tilde{n} \rangle \right) + \left\langle \frac{\partial n}{\partial r} \right\rangle \langle \tilde{v}_r \tilde{n} \rangle.
\]

turbulent energy

\[
\frac{1}{2} \frac{\partial \langle \tilde{n}^2 \rangle}{\partial t} = - \left\langle \frac{\partial n}{\partial r} \right\rangle \langle \tilde{v}_r \tilde{n} \rangle - \frac{1}{2} \frac{\partial}{\partial r} \langle \tilde{v}_r \tilde{n}^2 \rangle.
\]

energy exchange
Spreading model

Mean free energy

\[
\frac{1}{2} \frac{\partial \langle n \rangle^2}{\partial t} = - \frac{\partial}{\partial r} \left(\langle n \rangle \langle \tilde{v}_r \tilde{n} \rangle \right) + \langle \frac{\partial n}{\partial r} \rangle \langle \tilde{v}_r \tilde{n} \rangle.
\]

Turbulent energy

\[
\frac{1}{2} \frac{\partial \langle \tilde{n}^2 \rangle}{\partial t} = - \langle \frac{\partial n}{\partial r} \rangle \langle \tilde{v}_r \tilde{n} \rangle - \frac{1}{2} \frac{\partial}{\partial r} \langle \tilde{v}_r \tilde{n}^2 \rangle.
\]

Local drive

\[
\omega_D = - \frac{\langle \frac{\partial n}{\partial r} \rangle \langle \tilde{v}_r \tilde{n} \rangle}{\frac{1}{2} \langle \tilde{n}^2 \rangle}
\]

Turbulent spreading

\[
\omega_S = - \frac{1}{2} \frac{\partial}{\partial r} \langle \tilde{v}_r \tilde{n}^2 \rangle \Bigg/ \frac{1}{2} \langle \tilde{n}^2 \rangle.
\]
Local drive vs. spreading

\[\omega_D = -\frac{\langle \partial n / \partial r \rangle \langle \tilde{v}_r \tilde{n} \rangle}{\frac{1}{2} \langle \tilde{n}^2 \rangle} \]

\[\omega_S = -\frac{\frac{1}{2} \partial}{\partial r} \langle \tilde{v}_r \tilde{n}^2 \rangle}{\frac{1}{2} \langle \tilde{n}^2 \rangle} \]

Nonlocal transport in SOL
Conducting wall instability

∇T

$\tilde{\phi} = \Lambda \tilde{T}_e < 0$

$\tilde{\phi} = \Lambda \tilde{T}_e > 0$

ν_{ExB}

E

r

$B \bigotimes$

see talk by Valentina Nikolaeva today

Results from HSX

ETDB (www.ipp.mpg.de/ISS/)

Local drive (kHz)

Spreading drive (kHz)
Results from TJ-K and WEGA

ETDB (www.ipp.mpg.de/ISS/)

TJ-K

WEGA

Nonlocal transport in SOL

F.Fischer Batchelor thesisTUM
• Blobs are not generated at one particular position

• At ASDEX Upgrade L-mode sheath connected conditions most blobs are generated outside the separatrix (CWI)

• Turbulence spreading a more suitable diagnostics for blob generation than the skewness alone

• Turbulence spreading should play the key role for turbulence in the far-SOL (once the background gradient is small)

local drive
\[\omega_D = -\frac{\langle \frac{\partial n}{\partial r} \rangle \langle \tilde{v}_r \tilde{n} \rangle}{\frac{1}{2} \langle \tilde{n}^2 \rangle} \]

turbulent spreading
\[\omega_S = -\frac{1}{2} \frac{\partial}{\partial r} \frac{\langle \tilde{v}_r \tilde{n}^2 \rangle}{\frac{1}{2} \langle \tilde{n}^2 \rangle} \]
Skewness as the basic parameter

\[\text{Skewness} \]

\[\text{blob generation position (skewness = 0)} \]

\[\text{Isat (}\sigma\text{)} \]

\[\log \text{PDF} \]

\[\text{skewness} = 0.87 \]

ASDEX Upgrade: B. Nold et al. PPCF 2010

P. Manz

Nonlocal transport in SOL
Additional material
GEMR (AUG) finite Larmor radius effects

P. Manz
GEMR (TJ-K)
Blobs propagate radially outward

- **charge separation by curvature/gradB drift**
 \[
 \mathbf{V}_D \nabla B = - \frac{W}{q} \frac{\mathbf{B} \times \mathbf{B}}{B^3}
 \]

- **ExB drift accelerates blobs radially**
 \[
 \mathbf{V}_D \mathbf{E} \times \mathbf{B} = \frac{\mathbf{E} \times \mathbf{B}}{B^2}
 \]

Plasma filaments or blobs

Blobs are intermittently expelled density filaments in the scrape-off layer (SOL)

- Elongated along the magnetic field line
- Low magnetic field component (in contrast to ELMs)

[Origin and turbulence spreading of plasma blobs]

[B. Nold, PhD thesis]