

Structure and scaling of GAMs in TCV

Z. Huang, S. Coda, G. Merlo, C.A. de Meijere,
J.P. Graves, S. Brunner, M. Fontana, L. Porte,
L. Vermare¹, L. Villard, C. Wahlberg²,
J. Dominski, P. Hennequin¹, A. Krämer-Flecken³

¹LPP, CNRS-Ecole Polytechnique, Palaiseau, France ²Uppsala University, Sweden ³Forschungszentrum Jülich, Germany

Outline

- Introduction
- Multi-diagnostic characterization
 - Tangential phase contrast imaging
 - Radial structure
 - Eigenmode and multimode regimes
 - Mirnov coil: Poloidal and toroidal structure
 - Doppler backscattering
 - Correlation ECE
- Parametric studies for GAM drive and damping
- Summary and outlook

GAMs on TCV

- Unique, correlated multi-diagnostic observation with full determination of 3D wave number, frequency and spatial distribution
 - E×B flow Doppler backscattering
 - Density Tangential phase contrast imaging
 - Magnetic field Mirnov coils
 - Temperature Correlation ECE

Finite frequency $\omega_{\rm GAM} \propto c_{\rm s}/R$

- •m=0, n=0 $\widetilde{E_r}$ (& flow) component
- •m=1, n=0 \tilde{n} component ($\propto \sin \theta$)
- •m=2, n=0 $\widetilde{B_{\perp}}$ component ($\propto \sin 2\theta$)

The TCV tokamak

- High flexibility of plasma shape and divertor configurations.
- Strong EC heating and current drive.

Tangential phase contrast imaging (TPCI)

- Density fluctuation measurement
- 1 cm⁻¹ < k < 9 cm⁻¹; 1.5 MHz bandwidth
- Signal for \tilde{n} with radial \vec{k} comes from tangency point
- Scan ρ by moving plasma vertically

GAM spatial distribution and radial wavenumber

0.02

0.04

0.06

0.08

chord 9

0.16

Mainly outward propagating $k_{\rho} \sim 1.7 - 2.1 \text{ cm}^{-1}$

0.1

0.12

0.14

GAM eigenmode

• Local GAM frequency doesn't depend on local T_e , however it still roughly follows the scaling law when changing T_e globally.

Global eigenmode vs multimode regimes

- Eigenmode more commonly observed in TCV (limited plasma only)
- Multimode observed in both divertor and limiter shots, mainly with high safety factor.
- Transition observed in a single q-scan shot, however also with a divertor-limiter transition.
- Fundamental cause of the transition is not yet conclusively known.

Strong magnetic component in GAM eigenmode

- The single-frequency global GAM eigenmode over a large radial region results a strong magnetic component
- n=0, axisymmetric; m=2 standing wave as predicted by theory and GENE simulation

Poloidal mode structure of GAM magnetic component

 HFS phasing indicates presence of m>2 components

 MHD model extension to non-circular plasma predicts additional poloidal modes

GAM dependence on triangularity

- No magnetic component observed for $\delta < 0$
- \tilde{n} component can be observed till $\delta > -0.2$
- Frequency and wavenumber both increases with triangularity.

Electric field and E×B flow component by DBS

- Oscillating E×B flow observed by Doppler backscattering in the edge region.
- GAM flow ~0.7 km/s rms (background flow ~2 km/s)

GAM also observed by C-ECE

• A few puzzles remain:

- $k_{\rho} \sim 1.7 2.1 \, \mathrm{cm^{-1}}$ for TPCI (mainly above midplane); $k_{\rho} \sim 0.9 \, \mathrm{cm^{-1}}$ for C-ECE (near midplane).
 - GENE simulation: \widetilde{T}_e with m=0 + m=1, antinode on midplane.
- Predominantly outwardpropagating on TPCI;
 Propagation direction depends on location on C-ECE.

Plasma is invariably optically thin $(\tau < 0.5)$:

ECE measurement is unknown mix of T_e and n_e fluctuations

GAM-turbulence interactions

- GAM as a branch of zonal flow, is driven by nonlinear interactions of turbulence, and modulates turbulence.
- Bicoherence and envelope analysis proves nonlinear coupling between GAM and turbulence.

Drive and damping: dependence on n

- Ohmic density ramp-up: increase in background turbulence but GAM ~constant
- A quasi-coherent mode (QCM) at 70-110 kHz is visible from 0.5 to 0.9 s.
- Bicoherence is above noise level only from 0.3-0.6 s

Drive and damping: dependence on n

 The quasi-coherent mode has opposite propagating direction to the GAM

Drive and damping: dependence on n

- Relative fluctuation level: turbulence has modest excursion (LOC-SOC evolution), the transition time is about when bicoherence falls to noise level.
- QCM arises before the LOC-SOC transition, disappears before the phase when $\delta n/n$ increases with n.

Drive and damping: dependence on q

- In some q scan shot, GAM remains an eigenmode.
- q ramp down, GAM becomes stronger.

Drive and damping: dependence on q

- GAM amplitude increases when q is ramping down, opposite to increased Landau damping
- Summed-bicoherence at GAM frequency increases, suggests a trend of stronger drive from turbulence.

Summary

- Initial study on TCV has revealed GAM in density, magnetic-field, flow and ECE radiative temperature fields
- First multi-probe analysis of magnetic component has clearly confirmed axisymmetry
- Frequency, 3D wave number, radial profile have all been measured
- Bicoherence and envelope analysis proves GAMturbulence nonlinear coupling

Outlook

- Dedicated parameter and location scans with multiple diagnostics
- Better diagnostics:
 - Fully commissioned TPCI,
 - C-ECE using movable antenna
 - Toroidal Mirnov coil array on and off axis
- Additional gyrokinetic modelling runs (parametric studies) + synthetic diagnostics