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Outline 

 

• Magnetic properties of H-1 Heliac 

 

• Confinement & turbulence changes with rotational transform 

 

• Turbulence structure & flux 

 

• Directions for analysis 

 



H-1 Heliac, at the ANU 

Major radius 1m 

Minor radius 0.1-0.2m 

Magnetic Field 0.5T (<1T) 

ICRH 400kW (~50-100kW here) 

 ne 1-3x1018  

 Te,Ti ~20eV 

  

 

#3 



Control of rotational transform: effect of islands on confinement?  

• Helical coil produces “rotational transform” 

• When rotational transform is rational and its radial 

shear is small, magnetic islands may be formed 

• Low order rationals are also likely localization points 

for fluctuations – MHD theory 

• Island may be “stone in the river” forcing mean flow 

to zero, reducing electric field and enhancing 

transport? 
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    increasing twist  

Varied using helical 

coil current 
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Topic of this talk 
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H discharges 



Alfven waves and continuua 
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configurat ion parameter k h  

• Shear Alfvén modes:       

• ω = VA(n - im)/R0 . 

• Modes cluster  in V-shapes when plotted 

against rotational transform c.f. “Alfvén 

cascades”  

• Complex MHD gap structure, with “sound-

mode” coupling (BAE) 

 

 

(kH)    Increasing i  (twist per turn)  

Blackwell, B.D., et al.,. ArXiv e-prints, 2009, IAEA proceedings 2012. 

J Bertram et Al. PPCF 54 (2012) 055009 #5 
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Resistive interchange turbulence drive 

• Can drive medium-high scale fluctuations 

• Requires low shear-> H1 is low shear machine 

• Requires pressure gradient -> edge has that 

naturally 

• Seed rational needs to coincide with hill region 

• Relationship to open field line region? 
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Instability of resistive interchange 

(Garcia, 1997) 

H-1: h = 0.72 (where density is low) 

 

Analytic theory developed (Carrerras 1987/1989), verified by simulation 
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Probes: confinement & fluctuations for varying rotational transform 

ρ = 0.8 

t = 30 – 40 ms 

• Langmuir probes 
show density 
collapse more 
clearly 

• κh  ~ 0.73: Low 

density,  large 

coherent modes 

– ~70kHz 

mode 
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Interaction amongst modes: bicoherence 

• Bicoherence is a measure of 3 wave coupling of energy: f1,f2->f1+f2 #8 

Isat, r=1.33m, 

h=0.73 (poor 

confinement) 
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Helical current scan: profile response 

• Helical current ratio kh 

scanned in time from 

0.72 to ~0.83 in 

100ms 

• Density and 

temperature 

(smoothed) drops 

near kh=0.73 

• Te from Ball-pen 

probe: negative value 

near edge due to RF 

pickup (improved 

recently with RF 

choke) 
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Ball-pen probe: 

Adámek, J et al. 

Czechoslovak Journal of 

Physics 54 : 95–99. 
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Density dithering near edge 

• In low confinement 

region, density “dithers” 

between two states: 

temporal history and 

PDF resemble limit 

cycles? 

• But, there is a poloidal 

variation -> relationship 

to blobs 
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Isat: Poloidal separation: ~6cm, same 

flux surface (R=1.32m) 



High frequency coherent mode during density collapse 

• 80kHz mode may be related to fluctuation induced flux?  Non-alfvenic 

scaling. 
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R=1.32, isat 



Principle of Cross-correlation of 2 probes 
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1 2 
3 

Probe on midplane; 

Can only move radially 

Probe above 

Can move radially and 

vertically 

Ball-pen 

fork 

Power spectra; ballpen r/a=0.8 

• Ball-pen probe can be moved to plasma 

centre with only slight perturbation (at 

kh=0.83) 

• Fork probe perturbs plasma more than 

ball-pen probe 

– can only measure near the edge 



Frequency dependent cross-correlation 

• Turbulence has broad spectrum (~<200kHz) 

• Cross-correlation between two poloidal locations 

• Cross-phase conveys propagation speed 
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Cross-phase vs freq 
coherence 
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Cross-correlation: 100-200kHz (h=0.83,high density) 

• Cross-correlation shows narrow radial structure 0.8<r/a<1; poloidal 

elongation and detailed phase pattern 
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Model function fit 

• kr=-10. 

• m0=10. 

• Δ=0.1 

• Δθ=0.5 

• Eddy tilt, in direction of shear 

flow 

 

• kq = 0.83cm-1 

•  g = 0.1cm 

• kq g  ~ 0.1 (for ~100kHz) 
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i-dia up 

e-dia down 

(simple gradient of potential) 

Poloidal phase velocity 
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V/2; 

V=7km/s 

m (kHz) 

• Vq =7km/s up (ion dia direction).  Compare this with vExB? 

• Is probe potential profile reliable to calculate E? (Vfl = Vpl +2.54 Te) 

– Which ‘V’ to Use? 

• Need more careful measurements in edge. 

– Peak VExB~7km/s (idia) 

• For drift wave, Vq = VExB+ vdia, for MHD type mode, Vq=VExB 

 

Vplasma from BPP was 

incorrectly measured 
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Fluctuation induced flux 

[1] E.J. Powers , Nucl. Fusion, vol. 14 (1974) 

 

 

 

 

• Transport spectral density function [1]: 

 

 

 

Using 

Ball-pen probe 

To obtain Vpl 

total~1-5x1018m-2s-1 

Fluctuation driven flux is similar to 

total flux 

Dominated by coherent modes 

Not broadband turbulence 
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New dataset showing reversal of fluctuation direction upon loss of 

confinement 

• “Transition” linked to burst in plasma potential 

• Ambition: Calculated fluctuation induced flux, nonlinear parameters, 

examine transition in more detail 
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Density decreases 

kh 

kh 

Vplasma 
VExB
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Probe separation: ~60mm poloidally 



Conclusions 

• Coherent mode amplitude increases with poorer confinement (h=0.73) :  

– 7/5 resonance near edge in region of magnetic hill: interchange instability 

– Inverse turbulence cascade pumping low frequency modes 

• Dithering between two states analogous to transition phenomena in the 

pedestal 

• Edge turbulence structure:  

– Poloidal propagation near ExB velocity 

– Eddy tilt ~ 450: surprisingly large 

– Long range correlation not found so far 

• Coherent modes <100kHz drive most of the fluctuation-induced-flux at kh=0.83 

– Modes may be related to Alfven / sound continuum (BAE) 

– How can electrons & ions be “decoupled”? 

• Plans: 

– kq spectrum measured as function of iota: fluctuation-induced flux to be 

calculated (and compared with net flux) 

– Reynolds stress, transition dynamics (more probe tips)  

– Other diagnostics: 21ch interferometer, C II emission tomography 

– Island healing/growing, relation to flow shear 
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