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The model to study SOL turbulence
The GBS code and its path towards SOL simulations
Anatomy of SOL turbulence: from linear instabilities to SOL width and

(l)ﬂ intrinsic toroidal rotation
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SOL channels particles and heat to the wall

Scrape-off
Layer

Plasma outflowing from
the core

Perpendicular
transport

Parallel flow

Losses at the vessel




The SOL — a crucial issue for
the entire fusion program A
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The key questions

What is the mechanism setting the SOL turbulent level and the
perpendicular transport!

How is the SOL width established?
What are the SOL turbulent regimes?

How do the SOL properties depend on beta, resistivity, tokamak
size, ...!

How to minimize heat load on the vessel walls?
What determines the SOL electrostatic potential?

Are there mechanisms to generate toroidal rotation in the SOL!?



Courtesy of R. Maqueda

* Nfluc ™ Neg
) Lfluc ~ Leq

. Fairly cold magnetized plasma



The GBS code, a tool to simulate SOL turbulence

Collisional p <L Lw < Qi .
Plasma Braginskii N, ~ 1 D.rlft-.l."educeFI
> model | Braginskii equations

Magnetic curvature Parallel

8” A . dynamics Source
o 1 10,n] = C(nle) —nC(9) —_+ S

T.. ) (vorticity) == similar equations (T3 < T¢)

V|3, V|| = parallel momentum balance

Vig=0

Solved in 3D geometry, taking into account plasma outflow
from the core, turbulent transport, and losses at the vessel




Boundary conditions at the plasma-wall interface
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Code verification, method of manufactured solution

Our model: A(f) =0, f unknown

Wesolve A, (f,) =0, but fn_f:?

Method of manufactured solution:

1) we choose g, then S = A(g)

2) we solve: A, (g,) — S =0 _’|E — 4n — ¢

For GBS: e~ h?
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GBS analysis of configurations of increasing complexity
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GBS analysis of configurations of increasing complexity

From linear devices...

(role of non-curvature
driven modes, DWV vs KH)
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GBS analysis of configurations of increasing complexity

... to the Simple Magnetized Torus...
(role of curvature-driven modes and
rigorous code validation)
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GBS analysis of configurations of increasing complexity

...to limited SOL
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GBS analysis of configurations of increasing complexity

... supported by analytical investigations
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The key questions

* What is the mechanism setting the SOL turbulent level and the
perpendicular transport!



Three possible saturation mechanisms

Removal of the turbulence
drive (gradient removal):




Turbulent transport with gradient removal saturation

Turbulence | aﬁ a]—? i -
saturates whenit » — ~ — kr,np ~ p/Lp
removes its drive or or
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The key questions

e How is the SOL width established?



SOL width — operational parameter estimate

Balance of perpendicular dl’, 7 NnoCs
transport and parallel losses dr | ¢ qR
Bohm’s

Simulations show
expected scaling
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The key questions

* What are the SOL turbulent regimes!?



SOL turbulent regimes

Instabilities driving
turbulence depends
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Simulations agree with baIIooning estimates
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The key questions

* How do the SOL properties depend on beta, resistivity, tokamak
size, ...!



Limited SOL transport increases with (5 and v
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Limited SOL width widens with R
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Good agreement with multi-machine measurements

The ballooning scaling, in Sl units:
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The key questions

* How to minimize heat load on the vessel walls?



The ITER start-up — minimizing vessel heat load
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SOL width larger in HFS limited plasmas

<— HFS > LFS ><— HFS —




SOL width larger in HFS limited plasmas
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Trends explained by ballooning transport and ExB flow
Confirms experiments, but effects smaller




Prediction of the ITER start-up phase

Obtained from the ballooning scaling;
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The key questions

* What determines the SOL electrostatic potential?



Potential in the SOL set by sheath and electron adiabaticity

Typical estimate: at the sheath
Vi =Cs Ve = Cs eXP(A — et /TM)

to have ambipolar flows, Vj; = Vjle

¢ =AT*" /e ~ 375" /e

Our more rigorous treatment, from Ohm’s law

o= NTfe | 2T = T)/e

Sheath Adiabaticity




The key questions

* Are there mechanisms to generate toroidal rotation in the SOL?



GBS simulations show intrinsic toroidal rotation




A model for the SOL intrinsic toroidal rotation

Within the drift-reduced Braginskii model:

B

Time Parallel ExB transport Pressure
derivative = convection gradient

ExB transport:




Gradient-removal estimate of ExB velocity transport
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2D equation for the equilibrium flow

Turbulent driven radid Poloidal Parallel
transport convection convection
b

gradient-removal
estimate Coupling with core physics

with boundary conditions:

Sources of toroidal
rotation

Bohm’s
criterion

ExB
correction



Our model well describes simulation results...

Model

Simulation



... and experimental trends

Analytical solution, far from limiter:
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Core Sheath Pressure Polmdal asymmetry
at divertor plates,

due to ballooning transport,
direction: depends

coupling contribution,
co-current

. M||§1

* Typically co-current

* Can become counter-current by reversing B or divertor position



What are we learning from GBS simulations?

* To use a progressive simulation approach to investigate
plasma turbulence, supported by analytical theory

e SOL turbulence:

— Saturation mechanism typically given by gradient removal
mechanism

— Turbulent regimes: in limited plasmas, resistive ballooning
modes

— Good agreement of the scaling of the pressure scale length
with multi-machine measurements

— SOL width larger in HFS limited plasmas

— Sheath dynamics and electron adiabaticity set the electrostatic
potential in the SOL

— Toroidal rotation generated by sheath dynamics and pressure
poloidal asymmetry



