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When does reconnection happen?

Oppositely directed magnetic fields

Current sheet in between

When the current sheet is thin enough...
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What is reconnection anyway?

An x-line develops

Transfer of magnetic flux across the x-line

Magnetic tension drives plasma out
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How thin does it need to be?

Collisionless reconnection

Our simulations model collisionless plasma
The collisionless regime is valid in many space systems
including the heliosheath
Collision time for electrons is ∼ 16 days at 1 AU
A solar wind electron could move ∼ 4 AU in this time

Thin current sheets reconnect

Occurs at w ≈ di for collisionless plasma
di = c/ωpi = cA/Ωci is the ion inertial length

But where is it thin enough? ...
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In the magnetosphere

Reconnection at the front (magnetopause)

Reconnection at the tail (magnetotail)

Energetic flows go towards poles, cause aurora
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In the solar corona

Magnetic loops
interact

Reconnection occurs

Energetic flows go
towards footpoints

K. Schoeffler Magnetic islands in the Heliosheath



In the heliosheath

Sun emits a solar
wind

Wind is supersonic

Termination shock
(TS) develops

Heliosheath is on the
other side

But what about the
magnetic fields? ...
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Parker’s Spiral

Magnetic fields anchored to sun, frozen in to the plasma

In the rotating frame

Flow along field lines
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Heliospheric current sheet

Current sheet exists

Different axes cause flapping
current sheet

Current in ecliptic alternates
between north and south

Sectored fields
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Sectored Fields in the Heliosheath

(Opher et al. 2011)

Sectored fields found at solar system edge

Compress in the heliosheath

Ideal location for particle in cell (PIC) simulations

Voyager can compare with simulations
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Is it thin enough?

(Opher et al. 2011)

Current sheet width
10,000 km upstream
of shock

Voyager measures
n = 0.001cm−3

upstream

di ≈ 7,200 km

Predicted width 2,500
km downstream of
shock

Voyager measures
n = 0.003cm−3

downstream

di ≈ 4,200 km
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What do we simulate?

Multiple current sheets are simulated

Using a 2D particle-in-cell code

Magnetic islands form

Magnetic energy is released by reconnection
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It begins to tear

By at t=15Ωci
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By t = 15Ω−1
ci islands begin to form at λ ≈ 4πw

1Ω−1
ci corresponds to ∼ 1 minute in the

heliosheath
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Plasma beta plays and important role

β =
8πP

B2

For low β, magnetic fields dominate

For higher β, pressure becomes important

In many reconnection studies β is of order unity

In the heliosheath, β can be as large as ∼ 10
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There’s something different here

jz
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For β = 4.8

By t = 40Ω−1
ci islands grow long

The explanation of this phenomenon is described later
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Long islands remain
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We find long islands persist up until late time
(t = 120Ω−1

ci )

β has a large effect on the islands

Not all of the magnetic energy is released
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Anomalous Cosmic Rays

Anomalous Cosmic Rays (ACRs)

Energetic ions heated in the outer heliosphere
10− 100 MeV
Originally high energy PUIs from interstellar medium

Heating originally thought to be at the TS

Source beyond TS
Maybe heated in heliosheath islands
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Pick-up Ions

  

30 km/s

400 km/s

Pick-up Ions (PUIs)
Interstellar neutral atoms picked up by the solar wind, when
they are ionized
High energy PUIs (∼ 1 keV) contribute greatly to β
Source of ACRs (Fermi process preferentially energizes
energetic particles)

K. Schoeffler Magnetic islands in the Heliosheath



Pick-up Ions

  

30 km/s

400 km/s

Pick-up Ions (PUIs)
Interstellar neutral atoms picked up by the solar wind, when
they are ionized
High energy PUIs (∼ 1 keV) contribute greatly to β
Source of ACRs (Fermi process preferentially energizes
energetic particles)

K. Schoeffler Magnetic islands in the Heliosheath



Pick-up Ions

  

30 km/s

400 km/s

400 km/s

Pick-up Ions (PUIs)
Interstellar neutral atoms picked up by the solar wind, when
they are ionized
High energy PUIs (∼ 1 keV) contribute greatly to β
Source of ACRs (Fermi process preferentially energizes
energetic particles)

K. Schoeffler Magnetic islands in the Heliosheath



Fermi acceleration?

Acts like two walls
closing inward while
balls bounce between
them

Energy is gained each
time the ball hits the
wall

A magnetic island
compressing to a
circular shape acts as
the closing walls

A particle following
the magnetic field
acts as the bouncing
ball
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Fermi acceleration in action

Electron tracked in code

Picks up speed while bouncing between closing walls
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A pressure tensor?

P =

 P‖ 0 0
0 P⊥ 0
0 0 P⊥

 =
BB

B2
P‖ +

(
I− BB

B2

)
P⊥

For collisionless plasma, pressure is not isotropic

The gyrotropic pressure tensor

For higher β, pressure tensor becomes important
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An anisotropy develops

Anisotropy at t=81
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Energy gained in direction parallel to the magnetic field

Anisotropy defined as P⊥/P‖

Areas around islands become anisotropic
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What is the deal with magnetic tension?

ρ
dv

dt
= −∇

(
P⊥ +

1

8π
B2

)
+∇ ·

[(
1−

β‖ − β⊥
2

)
BB

4π

]

MHD momentum equation with anisotropy

For an Alfvén wave,

The plasma contains inertia
Magnetic tension provides restoring force

For anisotropy with P‖ > P⊥, tension is reduced

For β‖ − β⊥ > 2, firehose instability occurs
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β cannot be ignored

By t = 51Ω−1
ci clear

islands have
developed

Island length is
dependent on β

What causes this
dependence?
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Will the the islands remain in tension?

The acceleration time ta

time it takes for the ions to accelerate to Alfvénic outflow speeds

ta =
xa
cA
∼ 10

di
cA

= 10Ω−1
ci

The bounce time tb

time it takes for a significant electron pressure anisotropy to
develop

tb =
L

vthe
=

L

vA

√
1

βe

me

mi
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Only the longest survive
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For small islands
ta > tb

When firehose
condition met,
reconnection
suppressed

For long islands
ta < tb

Reconnection
develops before
firehose condition
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But how long?

Lcrit ≈ 10di

√
βe

mi

me

jz
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We predict
Lcrit ∼

√
mi/me

We test at β = 0.2

A dependence on
mi/me is observed in
simulations

We predict long
island formation even
at moderate βe

K. Schoeffler Magnetic islands in the Heliosheath



Anisotropies found

High β (β = 4.8), so many unstable points

Anisotropy, low tension

Ion pressure anisotriopy important
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Long islands still remain
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Extended islands remain long

In low β these islands would likely contract until round

Marginal firehose stable islands have no tension

Not all of the magnetic energy is lost
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They don’t stop growing

Islands merge as they
grow

Long aspect ratio
maintained

Islands should reach
sector spacing
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And they do it quickly

island width
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Growth rate independent of system size

Corresponds with about 60 days to reach the sector boundary

This corresponds to 2.5 AU past TS

K. Schoeffler Magnetic islands in the Heliosheath



Outline

1 Introduction to reconnection and the heliosheath

2 What did we actually simulate?

3 General background
Particle acceleration
Pressure anisotropy

4 Properties of the islands
Why do long islands form?
Do they grow enough to matter?
Particle acceleration revisited

5 Implications
What we can measure?
Where else might this be relevant?

6 Summary

K. Schoeffler Magnetic islands in the Heliosheath



But where did the magnetic energy go?
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Magnetic energy is
transferred to ion and
electron pressure energy

Ion heating is insensitive to
β

Electron heating is
suppressed at higher β
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Weibel gets in the way

Bz
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Anisotropy induced
instability emerges

Develops in regions of
small B

Identified as Weibel
instability

It is electron scale
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Acceleration limited
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Electron trapped in an island

Energy gained at bounces

Electron becomes scattered
by Bz

Parallel velocity transferred
to perpendicular
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We can measure this

Voyager can measure BT ,BR , and BN

The angle λ ≡ tan−1 (BT/BR)
Peaked at λ = 90◦ and 270◦

When islands form, distribution broader

Simulation

Distribution of λ
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Voyager Data

(Opher et al. 2011)
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Evidence of long islands

Distribution of λ
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Prediction of distribution based on shape

Short islands lose peaks

Long islands remain peaked, similar to observations

Allows estimate of β in heliosheath
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It is everywhere

High β systems occur in accretion discs, where β ∼ 100
(Sano et al. 2004)

Most of the gravitational energy goes into magnetic fields
Magnetic energy is released as heat via reconnection
There is little evidence of electron heating, consistent with the
suppression of heating in our simulations

High β reconnection expected in the magnetosphere of Saturn
(Masters et al. 2012)

Long islands should form at the magnetopause
Long islands may persist due to the high β

The β ∼ 1 in the magnetosphere of Earth is high enough for
longer islands to form, even if they would later become round.
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Summary

Long islands are generated in thin current sheets

Island length has a dependence on βe , and mi/me

Islands can become longer due to merging

Anisotropies play important role

Impedes reconnection involving small island formation
Keeps islands long, by weakening magnetic tension
Stops electron acceleration due to Weibel magnetic fields

Voyager can find evidence that islands

Exist
Are long

Could be important in other astrophysical systems
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Ions accelerate too
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