Magnetic islands in the Heliosheath: Properties and Implications

Kevin Schoeffler, Jim Drake, Marc Swisdak

University of Maryland College Park, Maryland

September 21, 2012

- 1 Introduction to reconnection and the heliosheath
- 2 What did we actually simulate?
- 3 General background
 - Particle acceleration
 - Pressure anisotropy
- Properties of the islands
 - Why do long islands form?
 - Do they grow enough to matter?
 - Particle acceleration revisited

5 Implications

- What we can measure?
- Where else might this be relevant?

1 Introduction to reconnection and the heliosheath

- 2 What did we actually simulate?
- General background
 Particle acceleration
 - Pressure anisotropy
- Properties of the islands
 - Why do long islands form?
 - Do they grow enough to matter?
 - Particle acceleration revisited

5 Implications

- What we can measure?
- Where else might this be relevant?

When does reconnection happen?

- Oppositely directed magnetic fields
- Current sheet in between
- When the current sheet is thin enough...

- An x-line develops
- Transfer of magnetic flux across the x-line
- Magnetic tension drives plasma out

- Collisionless reconnection
 - Our simulations model collisionless plasma
 - The collisionless regime is valid in many space systems including the heliosheath
 - $\bullet\,$ Collision time for electrons is \sim 16 days at 1 AU $\,$
 - $\bullet\,$ A solar wind electron could move ~ 4 AU in this time
- Thin current sheets reconnect
 - Occurs at $w \approx d_i$ for collisionless plasma
 - $d_i = c/\omega_{pi} = c_A/\Omega_{ci}$ is the ion inertial length
- But where is it thin enough? ...

In the magnetosphere

- Reconnection at the front (magnetopause)
- Reconnection at the tail (magnetotail)
- Energetic flows go towards poles, cause aurora

In the solar corona

- Magnetic loops interact
- Reconnection occurs
- Energetic flows go towards footpoints

In the heliosheath

- Sun emits a solar wind
- Wind is supersonic
- Termination shock (TS) develops
- Heliosheath is on the other side
- But what about the magnetic fields? ...

- Magnetic fields anchored to sun, frozen in to the plasma
- In the rotating frame
- Flow along field lines

Heliospheric current sheet

- Current sheet exists
- Different axes cause flapping current sheet
- Current in ecliptic alternates between north and south
- Sectored fields

Sectored Fields in the Heliosheath

(Opher et al. 2011)

- Sectored fields found at solar system edge
- Compress in the heliosheath
- Ideal location for particle in cell (PIC) simulations
- Voyager can compare with simulations

Is it thin enough?

(Opher et al. 2011)

- Current sheet width 10,000 km upstream of shock
- Voyager measures $n = 0.001 cm^{-3}$ upstream
- $d_i \approx$ 7,200 km
- Predicted width 2,500 km downstream of shock
- Voyager measures $n = 0.003 cm^{-3}$ downstream
- $d_i \approx$ 4,200 km

1 Introduction to reconnection and the heliosheath

2 What did we actually simulate?

- General background
 Particle acceleration
 - Pressure anisotropy
- Properties of the islands
 - Why do long islands form?
 - Do they grow enough to matter?
 - Particle acceleration revisited

5 Implications

- What we can measure?
- Where else might this be relevant?

What do we simulate?

- Multiple current sheets are simulated
- Using a 2D particle-in-cell code
- Magnetic islands form
- Magnetic energy is released by reconnection

- By $t = 15\Omega_{ci}^{-1}$ islands begin to form at $\lambda \approx 4\pi w$
- $1\Omega_{ci}^{-1}$ corresponds to ~ 1 minute in the heliosheath

$$\beta = \frac{8\pi P}{B^2}$$

- For low β , magnetic fields dominate
- For higher β , pressure becomes important
- In many reconnection studies β is of order unity
- In the heliosheath, eta can be as large as ~ 10

There's something different here

- For $\beta = 4.8$
- By $t = 40\Omega_{ci}^{-1}$ islands grow long
- The explanation of this phenomenon is described later

Long islands remain

- We find long islands persist up until late time $(t = 120\Omega_{ci}^{-1})$
- β has a large effect on the islands
- Not all of the magnetic energy is released

Introduction to reconnection and the heliosheath

2 What did we actually simulate?

General background

- Particle acceleration
- Pressure anisotropy
- Properties of the islands
 - Why do long islands form?
 - Do they grow enough to matter?
 - Particle acceleration revisited

5 Implications

- What we can measure?
- Where else might this be relevant?

Introduction to reconnection and the heliosheath

- 2 What did we actually simulate?
- General background
 Particle acceleration
 - Pressure anisotropy
- Properties of the islands
 - Why do long islands form?
 - Do they grow enough to matter?
 - Particle acceleration revisited

5 Implications

- What we can measure?
- Where else might this be relevant?

Anomalous Cosmic Rays

- Anomalous Cosmic Rays (ACRs)
 - Energetic ions heated in the outer heliosphere
 - 10-100 MeV
 - Originally high energy PUIs from interstellar medium
- Heating originally thought to be at the TS
 - Source beyond TS
 - Maybe heated in heliosheath islands

- Pick-up lons (PUIs)
 - Interstellar neutral atoms picked up by the solar wind, when they are ionized
 - High energy PUIs (\sim 1 keV) contribute greatly to β
 - Source of ACRs (Fermi process preferentially energizes energetic particles)

- Pick-up lons (PUIs)
 - Interstellar neutral atoms picked up by the solar wind, when they are ionized
 - High energy PUIs (\sim 1 keV) contribute greatly to β
 - Source of ACRs (Fermi process preferentially energizes energetic particles)

- Pick-up lons (PUIs)
 - Interstellar neutral atoms picked up by the solar wind, when they are ionized
 - High energy PUIs (\sim 1 keV) contribute greatly to β
 - Source of ACRs (Fermi process preferentially energizes energetic particles)

Fermi acceleration?

- Acts like two walls closing inward while balls bounce between them
- Energy is gained each time the ball hits the wall
- A magnetic island compressing to a circular shape acts as the closing walls
- A particle following the magnetic field acts as the bouncing ball

Fermi acceleration in action

- Electron tracked in code
- Picks up speed while bouncing between closing walls

Introduction to reconnection and the heliosheath

- 2 What did we actually simulate?
- General background
 Particle acceleration
 - Pressure anisotropy
- Properties of the islands
 - Why do long islands form?
 - Do they grow enough to matter?
 - Particle acceleration revisited

5 Implications

- What we can measure?
- Where else might this be relevant?

$$\mathbb{P} = \begin{bmatrix} P_{\parallel} & 0 & 0\\ 0 & P_{\perp} & 0\\ 0 & 0 & P_{\perp} \end{bmatrix} = \frac{\mathbf{B}\mathbf{B}}{B^2}P_{\parallel} + \left(\mathbb{I} - \frac{\mathbf{B}\mathbf{B}}{B^2}\right)P_{\perp}$$

- For collisionless plasma, pressure is not isotropic
- The gyrotropic pressure tensor
- For higher β , pressure *tensor* becomes important

An anisotropy develops

Anisotropy at t=81

- Energy gained in direction parallel to the magnetic field
- Anisotropy defined as P_{\perp}/P_{\parallel}
- Areas around islands become anisotropic

What is the deal with magnetic tension?

$$\rho \frac{d\mathbf{v}}{dt} = -\nabla \left(P_{\perp} + \frac{1}{8\pi} B^2 \right) + \nabla \cdot \left[\left(1 - \frac{\beta_{\parallel} - \beta_{\perp}}{2} \right) \frac{\mathbf{B}\mathbf{B}}{4\pi} \right]$$

- MHD momentum equation with anisotropy
- For an Alfvén wave,
 - The plasma contains inertia
 - Magnetic tension provides restoring force
- For anisotropy with $P_{\parallel} > P_{\perp}$, tension is reduced
- For $\beta_{\parallel} \beta_{\perp} > 2$, firehose instability occurs

1 Introduction to reconnection and the heliosheath

- 2 What did we actually simulate?
- 3 General background
 - Particle acceleration
 - Pressure anisotropy

Properties of the islands

- Why do long islands form?
- Do they grow enough to matter?
- Particle acceleration revisited

5 Implications

- What we can measure?
- Where else might this be relevant?

Introduction to reconnection and the heliosheath

- 2 What did we actually simulate?
- General backgroundParticle acceleration
 - Pressure anisotropy
- Properties of the islandsWhy do long islands form?
 - Do they grow enough to matter?
 - Particle acceleration revisited

5 Implications

- What we can measure?
- Where else might this be relevant?

β cannot be ignored

- By t = 51Ω⁻¹_{ci} clear islands have developed
- Island length is dependent on β
- What causes this dependence?

The acceleration time t_a

time it takes for the ions to accelerate to Alfvénic outflow speeds

$$t_a = rac{x_a}{c_A} \sim 10 rac{d_i}{c_A} = 10 \Omega_{ci}^{-1}$$

The bounce time t_b

time it takes for a significant electron pressure anisotropy to develop

$$t_b = \frac{L}{v_{the}} = \frac{L}{v_A} \sqrt{\frac{1}{\beta_e} \frac{m_e}{m_i}}$$

Only the longest survive

- For small islands $t_a > t_b$
- When firehose condition met, reconnection suppressed
- For long islands $t_a < t_b$
- Reconnection develops before firehose condition

But how long?

 $L_{crit} \approx 10 d_i \sqrt{\beta_e \frac{m_i}{m_e}}$

• We predict $L_{crit} \sim \sqrt{m_i/m_e}$

- We test at $\beta = 0.2$
- A dependence on m_i/m_e is observed in simulations
- We predict long island formation even at moderate β_e

Anisotropies found

- High β (β = 4.8), so many unstable points
- Anisotropy, low tension
- Ion pressure anisotriopy important

Long islands still remain

- Extended islands remain long
- In low β these islands would likely contract until round
- Marginal firehose stable islands have no tension
- Not all of the magnetic energy is lost

Introduction to reconnection and the heliosheath

- 2 What did we actually simulate?
- 3 General background
 - Particle acceleration
 - Pressure anisotropy
- Properties of the islands
 - Why do long islands form?
 - Do they grow enough to matter?
 - Particle acceleration revisited

5 Implications

- What we can measure?
- Where else might this be relevant?

They don't stop growing

- Islands merge as they grow
- Long aspect ratio maintained
- Islands should reach sector spacing

And they do it quickly

- Growth rate independent of system size
- Corresponds with about 60 days to reach the sector boundary
- This corresponds to 2.5 AU past TS

Introduction to reconnection and the heliosheath

- 2 What did we actually simulate?
- 3 General background
 - Particle acceleration
 - Pressure anisotropy

Properties of the islands

- Why do long islands form?
- Do they grow enough to matter?
- Particle acceleration revisited

5 Implications

- What we can measure?
- Where else might this be relevant?

But where did the magnetic energy go?

- Magnetic energy is transferred to ion and electron pressure energy
- Ion heating is insensitive to β
- Electron heating is suppressed at higher β

Weibel gets in the way

- Anisotropy induced instability emerges
- Develops in regions of small *B*
- Identified as Weibel instability
- It is electron scale

Acceleration limited

- Electron trapped in an island
- Energy gained at bounces
- Electron becomes scattered by *B_z*
- Parallel velocity transferred to perpendicular

Introduction to reconnection and the heliosheath

- 2 What did we actually simulate?
- 3 General background
 - Particle acceleration
 - Pressure anisotropy
- Properties of the islands
 - Why do long islands form?
 - Do they grow enough to matter?
 - Particle acceleration revisited

5 Implications

- What we can measure?
- Where else might this be relevant?

Introduction to reconnection and the heliosheath

- 2 What did we actually simulate?
- General background
 Particle acceleration
 - Pressure anisotropy
- Properties of the islands
 - Why do long islands form?
 - Do they grow enough to matter?
 - Particle acceleration revisited

5 Implications

- What we can measure?
- Where else might this be relevant?

We can measure this

- Voyager can measure B_T , B_R , and B_N
- The angle $\lambda \equiv \tan^{-1} \left(B_T / B_R \right)$
- Peaked at $\lambda = 90^{\circ}$ and 270°
- When islands form, distribution broader

(Opher et al. 2011)

Magnetic islands in the Heliosheath

Evidence of long islands

- Prediction of distribution based on shape
- Short islands lose peaks
- Long islands remain peaked, similar to observations
- Allows estimate of β in heliosheath

Introduction to reconnection and the heliosheath

- 2 What did we actually simulate?
- General background
 Particle acceleration
 - Pressure anisotropy
- Properties of the islands
 - Why do long islands form?
 - Do they grow enough to matter?
 - Particle acceleration revisited

5 Implications

- What we can measure?
- Where else might this be relevant?

- High β systems occur in accretion discs, where $\beta \sim 100$ (Sano et al. 2004)
 - Most of the gravitational energy goes into magnetic fields
 - Magnetic energy is released as heat via reconnection
 - There is little evidence of electron heating, consistent with the suppression of heating in our simulations
- High β reconnection expected in the magnetosphere of Saturn (Masters et al. 2012)
 - Long islands should form at the magnetopause
 - $\bullet\,$ Long islands may persist due to the high $\beta\,$
- The $\beta \sim 1$ in the magnetosphere of Earth is high enough for longer islands to form, even if they would later become round.

Introduction to reconnection and the heliosheath

- 2 What did we actually simulate?
- 3 General background
 - Particle acceleration
 - Pressure anisotropy
- Properties of the islands
 - Why do long islands form?
 - Do they grow enough to matter?
 - Particle acceleration revisited

5 Implications

- What we can measure?
- Where else might this be relevant?

- Long islands are generated in thin current sheets
- \bullet Island length has a dependence on $\beta_e,$ and m_i/m_e
- Islands can become longer due to merging
- Anisotropies play important role
 - Impedes reconnection involving small island formation
 - Keeps islands long, by weakening magnetic tension
 - Stops electron acceleration due to Weibel magnetic fields
- Voyager can find evidence that islands
 - Exist
 - Are long
- Could be important in other astrophysical systems

lons accelerate too

- lon trapped in an island
- Energy gained at bounces
- Ion is not scattered by B_z