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Outline

@ Sawtooth instability in tokamaks

© Stability
@ Introduction
o Equations
© Boundaries of marginal stability
@ Post-crash evolution of the g(r,t) profile
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Sawtooth

@ Sawtooth oscillations: regular period reorganization of the core plasma

surrounding the magnetic axis

Three stages

@ Ramp phase
@ Precursor oscillation phase
@ Crash

Deleterius

@ Couple to the boundary of the
confined plasma and trigger bursty
modes that result into violent release
of heat (Edge Localized Modes).
Loss of confinement

@ Trigger large "pressure driven islands”
(neoclassical tearing modes), that
cause plasma disruption. Loss of the
whole plasma.

Early discharges in JET

@
TIME, s
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From Hastie (APSS, 1998)
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Magnetic Reconnection
o Kadomtsev (1976)

Arrangement of the structure of the magnetic
field

@ Breaking

@ Merging
@ Energy release
[~}

Formation of magnetic structures (islands)

The breaking of the field lines happens at scales that depend on microscopic physics

far from the reconnection region the plasma is perfectly conducting (ideal

Magnetohydrodynamics) @CCFE
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Toroidal Plasmas

@ TOKAMAK (Magnetic Toroidal Chamber)

Poloidal Plasma

Reconnection? field electric current

@ Section of the torus /

@ Plasma core displacement

Toroidal
field

%)

|
Resultant helical field
(Pitch exaggerated)

Toroidal field B=Bp +Bt

Separatrix

This system undergoes a number of hydromagnetic instabilities related to magnetic
reconnection

Magpnetic field lines literally tear apart (tearing modes) and break
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Toroidal Plasmas

o TOKAMAK (Magnetic Toroidal Chamber)

Reconnection!

@ Section of the torus

@ Croissant-shaped magnetic island

Spherical Tokamak MAST, Culham, UK

This system undergoes a number of hydromagnetic instabilities related to magnetic
reconnection

Fundamental parameter for stabilty g(r) = r/R(Bt/Bp), the "safety factor”, field lines’
pitch

Instabilities occur at q(rn.m) = n/m (rational surfaces)
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The context

@ In a recent work [Connor Hastie Zocco PPCF, 54, 3 (2012) or arXiv:1110.2398] we
studied the stability of those reconnecting/kink modes we believe are involved in
the phenomenology of the Sawtooth in Tokamaks

@ General theory of drift-tearing and internal kink modes with non-isothermal
electrons (semicollisional) and gyrokinetic ions.

@ Why? The accepted picture is that the Sawtooth in triggered when a stability
threshold is crossed.

@ However: (generally but no always) three phases = ramp, instability (precursors,
not always), crash.
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@ In a recent work [Connor Hastie Zocco PPCF, 54, 3 (2012) or arXiv:1110.2398] we
studied the stability of those reconnecting/kink modes we believe are involved in
the phenomenology of the Sawtooth in Tokamaks

@ General theory of drift-tearing and internal kink modes with non-isothermal
electrons (semicollisional) and gyrokinetic ions.

@ Why? The accepted picture is that the Sawtooth in triggered when a stability
threshold is crossed.

@ However: (generally but no always) three phases = ramp, instability (precursors,
not always), crash.

@ The process is periodic: we have to know what takes you to the pre-crash
conditions after a crash.

@ Here the pre-crash condition is believed to be the picture in Connor Hastie Zocco
PPCF, 54, 3 (2012), with all the boundaries

@ The post-crash evolution within this picture is now analysed more quantitatively to
give a simple prediction for the Sawtooth period.
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Very important

@ Why semicollisional?
@ Why the drift-tearing mode?

& CCFE

a.zoccol®physics.ox.ac.uk Sawtooth Period Lisbona 8/3/2013 8/ 34



Equilibrium

Start with a sheared magnetic field Add a small localized perturbation

y
y
7 :Hi | lez
/ng LT
5 @ i l

B= QZBO +e, X DAH,eq

X
Aj(x,y,t) = A eq(x) + A (x)elhr—iot

This equilibrium is prone to formation of singularities.

Once the equilibrium is perturbed, the mode evolves to resolve the singularity by forming

a magnetic island
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Islands

If A curvilinear variable moving along By the definition of magnetic field lines
the field line

Ix 00A
dd(,\/\) = 0By (X()‘)»Y(/\)) = ay(,\H)

Jd0A
YA _ 5B, (x(A),y(A)) = — o2

AHis the Hamiltonian of the field lines
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A2 and O Points

For an even localized perturbation in x, sinusoidal in y
X2
O0A| =~ A(0) { 5~ cos(ky)}
The phase portrait of the perturbed magnetic potential
“\3&2 »L M#D
7-pont

7;
) A X'Pdl'lt
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The equilibria are (x1,ky1) = (0,0) and (x2,ky2) = (0, 1)
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A2 and O Points

For an even localized perturbation in x, sinusoidal in y
X2
O0A| =~ A(0) { 5~ cos(ky)}
The phase portrait of the perturbed magnetic potential
“\3&2 »L M#D
7-pont

7;
) A X'Pdl'lt

The equilibria are (x1,ky1) = (0,0) and (x2,ky2) = (0, 1)

Around (x1, ky1) displaced field line Eq. 5&+Aﬁ(0)k2x =0= 0 —point
Around (x2, ky2) displaced field line Eq. X — A?(0)k?x = 0= 2 — point

The current can flow along the perturbed magnetic field, the magnetic flux increases, the island
grows BUT NONIDEAL PHYSICS IS NEEDED
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Drift-tearing

Write one equation of motion of the electrons

. } wy | KfToe
me(iw— Vei)VH = eE (1 — E) + o ]
accel el field+pressgrad  visc.force
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Drift-tearing

Write one equation of motion of the electrons

k2T

. ~ (035 Oe

me(iw— Vei)VH = eE (1 — E) + HOJ ]
accel el field+pressgrad  visc.force

There are regions where the current is limited by electron thermal conduction
kH2 Toe
w

~ ~ 2.2
meve,'VH ~ v = WV ~ k” Vihe
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Drift-tearing

Write one equation of motion of the electrons

k2T

. ~ (035 Oe

me(iw— Vei)VH = eE (1 — E) + HOJ ]
accel el field+pressgrad  visc.force

There are regions where the current is limited by electron thermal conduction
kH2 Toe
w

~ ~ 2.2
meve,'VH ~ v = WV ~ k” Vihe

Once this is achieved, to maintain force balance
eE(lf%) =0=w~w
w
the mode rotates in the electron direction.

The drift-tearing mode is a slowly growing rotating island

The island form because of small nonideal effects around the rational surface

No breaking of “frozen-in" law, no reconnection ig CCFE
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Why is this important?

Width of the mode & = ,‘(/TZ’LS (L3 =~ d,q(r) magnetic shear length)

N 2
Introduce Be = [36% (Ln density gradient length, measure electr. diamagn.), given a
resistive scale Jy

2
o (%’Z) ~ BA = for large density gradients and small magnetic shear the

o
semicollisional theory is required
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Why is this important?

Width of the mode & = ,‘(/T:’Ls (L3 =~ d,q(r) magnetic shear length)

N 2
Introduce Be = [36% (Ln density gradient length, measure electr. diamagn.), given a
resistive scale Jy
5\ 2 1 . . .
o (Kj) ~E = for large density gradients and small magnetic shear the

o
semicollisional theory is required

°® % ~ 0.1 for typical JET parameters (p; ion Larmor radius)

ION KINETICS IS NEEDED
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Formulation

K| Vthe < Vei neglect Landau damping

w~kv

the/Vel semicollisional effects

Braginskii's Eqgs. for the electrons are valid
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Formulation

K| Vthe < Vei neglect Landau damping

kav

the/vel semicollisional effects

Braginskii's Eqgs. for the electrons are valid

Can be derived in the collisional limit of the Kinetic Reduced Electron Heating Model [see
Zocco-Schekochihin Phys. Plasmas, 18, 10, (2011) ]

Here all background electron density and temperature gradients are kept.
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Formulation

K| Vthe < Vei neglect Landau damping
w ~ kH2 Vtzhe/vei semicollisional effects

Braginskii's Eqgs. for the electrons are valid

Can be derived in the collisional limit of the Kinetic Reduced Electron Heating Model [see
Zocco-Schekochihin Phys. Plasmas, 18, 10, (2011) ]

Here all background electron density and temperature gradients are kept.

@ History...
@ lon FLR stabilization [Antonsen Coppi (1982), BUT COLLISIONLESS]
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Formulation

K| Vthe < Vei neglect Landau damping
W~ kH2 Vtzhe/V3i semicollisional effects
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Formulation

K| Vthe < Vei neglect Landau damping
W~ kH2 Vtzhe/V3i semicollisional effects

Braginskii's Eqgs. for the electrons are valid

Can be derived in the collisional limit of the Kinetic Reduced Electron Heating Model [see
Zocco-Schekochihin Phys. Plasmas, 18, 10, (2011) ]

Here all background electron density and temperature gradients are kept.

@ History...
@ lon FLR stabilization [Antonsen Coppi (1982), BUT COLLISIONLESS]

@ Diamagnetic stabilization, BUT COLD ION LIMIT [Drake et al. (1983)]
@ lon FLR stabilization [Cowley et al. (1985), semicoll. BUT SMALL A’ (to be introduced)]

@ lon kinetic kink mode [Pegoraro et al. (1989), BUT no semicollisional physics]

(]

We derive a unified theory for Nne ~N; ~ T~ A’p; ~ k p; ~1 - CCFE
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Double Asymptotic Matching

We can derive a general disperion relation for these modes
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Double Asymptotic Matching

We can derive a general disperion relation for these modes

Within some subsidiary orderings we can study it analytically

° fx1

o B>1

-3 [§ ~Ne~1, but w/w.e — 1 for the drift tearing mode
=) BN 1, but w/w.e < 1 for the kink mode
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~

Transition to stability at finite 3

@ We saw w/w.e — 1, for large A’ but the electron region was solved imposing zero
magnetic perturbation at the rational surface. [Drake et al. Phys. Fluids 26, 2509
(1983)]
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B > Be = 0.34 (for Ne ~2.53)

S CCFE

a.zoccol@physics.ox.ac.uk Sawtooth Period Lisbona 8/3/2013 16 / 34



~

Transition to stability at finite 3

@ We saw w/w.e — 1, for large A’ but the electron region was solved imposing zero
magnetic perturbation at the rational surface. [Drake et al. Phys. Fluids 26, 2509
(1983)]

@ We can solve without imposing this constraint the complete fourth order
differential electron equation in two separate electron sub-regions if ne ~ 2.

® We match the two sub-regions, we match to the ion-region, and we get the
shielding factor A(8) missed before and calculate the critical Bne for stabilisation

B > Be = 0.34 (for Ne ~2.53)

Bo

T 0.5/[aq/(r1)]*. (1)

B =
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Finite [Ai theory of the internal kink mode

@ If for these modes W < 1, we can seek solutions based on an expansion in @,
rather that in B at finite @.

S CCFE

a.zoccol@physics.ox.ac.uk Sawtooth Period Lisbona 8/3/2013 17 / 34



Finite [Ai theory of the internal kink mode

@ If for these modes W < 1, we can seek solutions based on an expansion in @,
rather that in B at finite @.

® The small @ expansion of the ion response fails for k ~ &1 > 1, we have to solve
in this intermediate region before matching to the electron region
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Finite [Ai theory of the internal kink mode

@ If for these modes W < 1, we can seek solutions based on an expansion in @,
rather that in B at finite @.

® The small @ expansion of the ion response fails for k ~ &1 > 1, we have to solve
in this intermediate region before matching to the electron region

@ The electron region is straightforward to solve iteratively in @ (in the same way as

in )
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Finite [Ai theory of the internal kink mode

@ If for these modes W < 1, we can seek solutions based on an expansion in @,
rather that in B at finite @.

® The small @ expansion of the ion response fails for k ~ &1 > 1, we have to solve
in this intermediate region before matching to the electron region

@ The electron region is straightforward to solve iteratively in @ (in the same way as

in )

@ After the matching we get a general dispersion relation. We derive an analytic
expression for the boundary of stability #(Ay,3) =0 ()\gl 0-4A")
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Finite [Ai theory of the internal kink mode

@ The boundary of marginal stability is calculated analytically for the first time
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Finite [Ai theory of the internal kink mode

@ The boundary of marginal stability is calculated analytically for the first time

— H(u )\/1+ d(ne) sin(mp /2)
éoA’ dq 1+T cos(nul) sin(3mu1/2)
()
e (Hm )
with
124 T2 (—p) cos(TTH1) £ 3
H )_{1/27;11 (k1) cos(nu1/2)+\/sin(nu1/2)sin(3nu1/2)} ’ @)

20 =\/1+4B/(1+T), ko = Y(1)+ Y(3) — l,U(3/2 H1) — @Y(3/2+ p1), where ¢ is the digamma
function, k(n;,7) = ff‘” dk [GT _ ﬁ\/ﬁ/z o5 ] Go(k) = —(1— & 1)+ Fo(k),
Fo(k) =@ 1{lo(k?/2) —1—n;k?/2[To(k?/2) —T1(k%/2)]}
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Finite [Ai theory of the internal kink mode

@ The boundary of marginal stability is calculated analytically for the first time

— H(u )\/1+ d(ne) sin(mp /2)
éoA’ dq 1+T cos(nul) sin(3mu1/2)
()
e (Hm )
with
124 T2 (—p) cos(TTH1) £ 3
H )_{1/27;11 (k1) cos(nu1/2)+\/sin(nu1/2)sin(3nu1/2)} ’ @)

20 =\/1+4B/(1+T), ko = Y(1)+ Y(3) — w(3/2— p1) — W(3/2+ 1), where i is the digamma
function, l(ni.1) = 5" [ € — =47a g |+ Go(k) = ~(1-67) + Fo(k)

Fo(k) =@ 1{lo(k?/2) —1—n;k?/2[To(k?/2) —T1(k%/2)]}

The mode is unstable and rotates in the ion direction

o=—/d(ne)

iI+t1 iy 1 %
2m1dy <1 )|n(p,52/5o)p, ° e
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Finite [Ai theory

Boundaries of marginal stability

LN

Kink-unstable

Tearing-stable

Tearing-unstable
Kink-stable

\\\\\j\,\\,\.\,\.\_\_\_\\\_\\

!

AY
\,

iy /Tearmgstable
NNANNB<Geed NN N\

0.1 0.2 0.3 0.4 0.5 0.6 0.7

A Sy

o

#(&A,B)=0
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Finite [Ai theory

Local critical shear [Electron Cyclotron Current Drive control showed the
importance]

A 1 Rr12 Qe o Be

Sc ~ Y
A a a2\ 0.5v, \/%(4.08—1.71%)

: ()

@ Derived from the explicit expression of the boundary of marginal
stability!!!

@ Not given by the diamagnetic stabilisation condition y < w,; of
Porcelli-Boucher-Rosenbluth [Plasma Phys. and Control. Fusion 38,
2163 (1996).]

@ We can also derive from first priciples some heuristic constants
introduced by Porcelli et al.

o Notice 5. 0 3W?/3, in the standard notation of MHD stability

(BW =32/A'n).
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Evolution of the g profile

@ We saw that the stability of reconnecting and ki[Ge'lfand Shilov ('60)]nk modes can be
described in the plane (B8,A).

@ We could aim at a criterion for the onset similar to that Porcelli-Boucher-Rosenbluth (that
is, the crossing of the boundary of marginal stability)

@ It is the evolution of g after the crash that tells us when the boundary is crossed
@ For this we need to derive a g equation coupled to transport equations

@ We content ourselves with the exact boundary of stability to be implemented in transport
codes, and proceed with a simple model for the neoclassical resistivity

@ Idea (Gimblett and Hastie): the evolution of the safety factor on-axis can drive MHD
modes to trigger the Sawtooth (1994).

& CCFE

a.zoccol@physics.ox.ac.uk Sawtooth Period Lisbona 8/3/2013 21 /34



Evolution of the g profile

@ As first suggested by Park and Monticello [Nucl. Fusion 30, 2413 (1990)], we consider the
importance of the trapped particles

Neoclassical resistivity is given approximately by (Hirshmann et al)

n(r)=nsy(r)/(1=/r/Ro)?, (6)

where nsp, is the Spitzer resistivity. With the electron temperature profile given by
Te(r) = To(1—1r?/a?)*/3, the Spitzer resistivity has the form

No

TR @

fls;a(f)
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Evolution of the g profile

We construct the relevant diffusion equation for the g profile in the cylindrical Tokamak limit
retaining one toroidal effect, namely the neoclassical correction to resistivity. Thus,

dBg
B —c(OxE)y

9 (n1) ()

= or
0 ne? o
= ar {rmﬂ(fBe)}v

and using the definition of the safety factor q(r) = £ &=

Ro Bg
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Evolution of the g profile

We construct the relevant diffusion equation for the g profile in the cylindrical Tokamak limit
retaining one toroidal effect, namely the neoclassical correction to resistivity. Thus,

(959

s —c(OxE)y

0

e (1) ®)
d [ne? o
= {m ar “B@)} )

and using the definition of the safety factor q(r) = RLO%;'

(2)ek k]

T=1t/Ty, x=r?/a?, with 1, = 4ma?/(nc?),
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Evolution of the g profile

The model for neoclassical resistivity will be

~ 1
109 = @ veamye ()

where € = a/Ry. Clearly, the quartic power in the trapped electron correction to Spitzer
resistivity generates (unphysical) singular behaviour, for x — 0.
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Evolution of the g profile

The model for neoclassical resistivity will be

~ 1
109 = @ veamye ()

where € = a/Ry. Clearly, the quartic power in the trapped electron correction to Spitzer
resistivity generates (unphysical) singular behaviour, for x — 0.

This is removed by including the transition from a neoclassical resistivity to Spitzer when

3/2

Vihe r
Ve > — . 11
€ RoQo<Ro> (11)
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Evolution of the g profile

The model for neoclassical resistivity will be

~ 1
109 = @ veamye ()

where € = a/Ry. Clearly, the quartic power in the trapped electron correction to Spitzer
resistivity generates (unphysical) singular behaviour, for x — 0.

This is removed by including the transition from a neoclassical resistivity to Spitzer when

3/2
Vihe r
Ve > — . 11
€ RoQo<Ro> (11)

Incorporating this correction, the expression for the resistivity becomes

Ax) = e — (12)

— 2
x3/4 v, )

where v, = Ve /(€32 Wye), With Wre = vene/(qR0) the transit frequency of thermal electrons.
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Evolution of the g profile

The model for neoclassical resistivity will be

o 1
109~ e veary 4o

where € = a/Ry. Clearly, the quartic power in the trapped electron correction to Spitzer
resistivity generates (unphysical) singular behaviour, for x — 0.

This is removed by including the transition from a neoclassical resistivity to Spitzer when

Vthe r 3/2
Ve > — . 11
¢” Roqo ( Ro ) (11)

Incorporating this correction, the expression for the resistivity becomes

o 1
M) = e (12)

x3/4 1y,

where v, = ve/(s3/2o.)te)7 with e = vipe/(gR0) the transit frequency of thermal electrons.

@ In JET or ITER, the dimensionless parameter Vv, is small, so that resistive evolution in the
vicinity of the magnetic axis, though not singular there, is likely to be rapid
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Evolution of the g profile

The model for neoclassical resistivity will be

o 1
x) = s 13
)= ag2a = vaarny (13)
where € = a/Ry. Clearly, the quartic power in the trapped electron correction to Spitzer
resistivity generates (unphysical) singular behaviour, for x — 0.
This is removed by including the transition from a neoclassical resistivity to Spitzer when
3/2
Vthe r
> —= . 14
€~ Roqo <R0> (14)
Incorporating this correction, the expression for the resistivity becomes
() = - (15)
(1-x)2(1- /)2

where v, = Ve /(€32 Wye), With Wre = vene/(qR0) the transit frequency of thermal electrons.
By expanding Eq. (9) locally around x =0, and employing Eq. (15), one obtains the solution

d0(t) = qo(0) exp (—t/1.), (16)
with 5
B Vi Ry Ne
T*_Tn8\/§D v (17)

Hence, at early times, the safety factor undergoes an exponential decay, on the@@@FE

a.zoccol@physics.ox.ac.uk Sawtooth Period Lisbona 8/3/2013 25 / 34



Evolution of the g profile

Kadomtsev Reconnection q(r/a)
. 2.2
@ Section of the torus )
@ Plasma core displacement 18
1.6
1.4
1.2
v 0.2 o 06 0.8 T e
<> oo

Pre and post crash Kadomtsev states

Separatrix

,  l-tanh(Zmix) 1ttanh(“pix)

Adpc dfin din

where gin = qo/(1 —x?+1/3x?), g, = 1/(1—0.27x), qo = 0.75,
mix/a=9—/144qo —63/4 ~ 0.573a, and § =5 x 10~ 3a.
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Evolution of the g profile

Kadomtsev reconnection a(r/a)

. 2.2

@ Section of the torus )

@ Plasma core displacement L8
1.6

1.4

1.2

02 o 06 08 e
0.8

Pre and post crash Kadomtsev states

We could use the Gimblett-Hastie state [Plasma Phys. and Control. Fusion 36, 1439
(1994)] or

The incomplete reconnection state [C. G. Gimblett and R. J. Hastie, PPN/94/30 (Nov
1994)]

[F. Porcelli, D. Boucher, and M. N. Rosenbluth, Plasma Phys. and Control. Fusion 38,
2163 (1996)].

For our purposes, it is not important how you get the post-crash &profile!
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Post-crash evolution of the g profile

Post-crash evolution

q(r/a,
2.25

2
1.75
1.5
1.25

t/t.)

Two important facts

Rapid diffusive broadening of the initial current
sheet at r = rp;x

Rapid downward evolution of g(0, t)

0.5
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Axial criterion and Sawtooth Period

One might wonder what can limit such evolution of g on axis.

@ From the theory of ideal MHD, for go <1/2, an m=1, n=2 mode
becomes unstable in a cylindrical plasma, [True also in a torus Bussac
et al PRL (1975)]

@ Phenomenologically, having qo =~ 0.75, if it is not a sufficient
condition, surely is necessary for the sawtooth trigger

@ Hence, it is tempting to look for a correlation between the crossing of
g < qo, and the Sawtooth period.

@ Solve for the time at which ¢(0, Tsaw ) —0.75 = 0.
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Axial Crieterion and Sawtooth Period

Sawtooth period Scalings

TsAw/ T

10 Tsaw ~ TV, 2 O RSPNZP T2/ sec.001 S
5 v <1

Tsaw ~ Tp O T2/?a? sec.

0.5
0. 0001 0. 00@s 001 0.00®. 01 0.050.1 v
JET ITER
a=1m a=3m
Te =4keV Te = 25keV

Ty ~400sec || Tp ~ 24 x 103sec

T, ~ 0.86sec T, ~ 3sec

Vi ~0.01sec || Vi ~6x 10 *sec

S, ~4.6cm o, ~1l.4cm @CCFE
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Conclusion

@ We discussed the role of neoclassical resistivity and local magnetic shear in the
prediction of the sawtooth period in Tokamaks.

@ We calculated the new critical shear for stabilisation of the dissipative kink mode
with grokinetic ions and semicollisional electrons, improving previous results.

@ We then considered the influence of neoclassical resistivity on the evolution of the
safety factor on-axis, q(0,t). This evolves on a new time scale much shorter than
the resistive diffusion time, and is characterised by the formation of a structure of
size O, ~ vf/3a, witha the minor radius.

@ We explored the possibility of having the Sawtooth triggered by the the ideal MHD
instability m =1, n =2, which can be driven when ¢(0,t) =~ 0.75.

@ When .001 < v, <.01, we find a "sawtooth period” scaling as

Tsaw ~ R§/3N3/3 Tel/6 sec. For smaller v,, the width &, becomes negligible

compared to the position of the resonant surface, and cannot change the global

resistive dynamics.

@ For ITER, we estimate values of the Sawtooth period much shorter than what one
would expect from a simple resistive diffusion model of the g profile:

Tsaw < 100sec.
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Post-crash evolution of the g profile

Long time equilibrium q
q(r/a) E(r/a)
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Post-crash evolution of the g profile
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Evolution of the g profile
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