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Summary/Outline

® Documented the response of pressure-gradient driven

turbulence to continuous variation of flow shear in LAPD
[Schaffner, et al., PRL 109, 135002 (2012)]

® Continuous control of edge flow through biasing; variation
includes zero-shear and zero-flow states, flow reversal

® Particle transport decreases with increased shearing,
enhanced at low flow shear, independent of flow direction

® Transport reduction due to turbulent amplitude reduction;
near complete suppression for shearing rate comparable to
no-shear autocorrelation rate

® Two-fluid simulations with BOUT++ code: good qualitative
match to measurements; saturated state of turbulence

consistent with action of a nonlinear instability. [Friedman, et
al., arXiv:1205.2337, PoP submitted]



Why is fusion so difficult?: turbulence causes leakage
of heat and particles across confining magnetic field

® Free energy source from
pressure gradient:
interchange modes, drift
waves

® Movie shows
electrostatic potential

® Small scales across B,
long wavelength along B

Gyrokinetic simulation by Jeff Candy, Ron Waltz (GA)



Why is fusion so difficult?: turbulence causes leakage
of heat and particles across confining magnetic field

Mode: Electrostatic ® Free energy source from
pressure gradient:
interchange modes, drift
waves

Adiabatic electrons
Flux-tube

Collisionless
® Movie shows

Shape: x =1.6,0 =04 . .
electrostatic potential

Resolution: (n,,n..n,) = (128, 20, 16)
® Small scales across B,
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long wavelength along B

Time-step: (c¢g/a) At =0.1

Gyrokinetic simulation by Jeff Candy, Ron Waltz (GA)
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Why is fusion so difficult?: turbulence causes leakage

of heat and partlcles across confining magnetic field
Udrift — B2

Movie shows

electrostatic potential

Contours of potential
are contours of ExB flow

Gyrokinetic simulation by Jeff Candy, Ron Waltz (GA)



Turbulent diffusion estimate
® Turbulent diffusion: random walk by eddy decorrelation
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Turbulent diffusion estimate
® Turbulent diffusion: random walk by eddy decorrelation
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Turbulent diffusion estimate
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Classical diffusion: Dejass ~ p°v ~ T /2 (v ~ T_S/Z)



Turbulent diffusion estimate
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D ~ ﬂ ~ — Bohm diffusion
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Classical diffusion: Dejass ~ p°v ~ T /2 (v ~ T_S/Z)

® Turbulent diffusion coefficient orders of magnitude larger than
classical (not shown here)

® More importantly: scaling with T is opposite. As T goes up (more
heating power is added) confinement degrades. Consistent with so-
called “low-confinement” mode or L-mode in experiments.



Improved confinement due to edge flow layer: the H-mode
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® H-mode [Woagner, 82]: factor of two

improvement in energy and particle
confinement (basis for ITER Q=10)

® Signature is edge transport barrier, with

steepened gradients (“pedestal”)
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Improved confinement due to edge flow layer: the H-mode
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Improved confinement due to edge flow layer: the H-mode

® H-mode [Woagner, 82]: factor of two
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® During H-mode, localized cross-field flow
(“Er well”) with strong shear develops
spontaneously in the barrier region [e.g.,
Burrell, 97] (source of flow??)

PROBE POT. (kV)

® Experiments on CCT at UCLA [Taylor,
89] demonstrated the link between flow
and improved confinement by directly
controlling the edge flow using biasing

DENSITY x1012/Cm3




Secret to H-mode!: Turbulent transport
reduction by sheared flow

T I ® Biglari, Diamond, Terry (BDT 90):
transport modified by radial

? T X b decorrelation or “shearing apart”
| of eddies

l ' - ® Shearing dynamically important if
l l 1 shearing rate comparable to eddy
turnover time
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® Turbulent particle flux depends on fluctuation amplitudes and
cross-phase between density and electric field fluctuations;
both are predicted [BDT;Ware;...] and observed [Burrell;
Moyer; Boedo; Silva; Carter....] to be modified by shearing



Motivation for basic experiment investigating shear

suppression of transport

® |arge body of work demonstrating shear suppression of

turbulent transport in experiment and simulation [see, e.g.,
Burrell 97, Tynan 09, Terry 00...]

® However, fundamental questions remain about mechanism for
transport reduction: decorrelation models (e.g. BDT)
underpredict suppression (by an order of magnitude). New
ideas: nonlinear spectral shift [Staebler], enhanced coupling to
damped eigenmodes by shear flow [Terry], etc.

® Role of shear-driven instabilities?: parallel velocity gradient
instability in tokamaks [Barnes, Highcock, et al.]; Kelvin-
Helmholtz, Rotational interchange in linear devices

® Predicting transport in current and future devices (ITER)
requires validation of models against experiment: predicting
shear suppression accurately is absolutely critical



The LArge Plasma Device (LAPD) at UCLA
IR )

Y

® US DOE/NSF sponsored user facility (http://plasma.physics.ucla.edu)-
® Solenoidal magnetic field, cathode discharge plasma

¢ 0.5<B<2kG,n,~10%cm >, T, ~5eV.T: ~ 1eV

® [arge plasma size, | 7/m long, D~60cm (1kG:~300 p;, ~100 ps)
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LAPD Plasma source
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Example Plasma Profiles

— No Bias
-- 175V Bias

r (cm)

® |ow field case (400G) (also shown: with particle transport barrier
via biasing™); generally get flat core region with D=30-50cm

® Broadband turbulence generally observed in the edge region

(localized to pressure gradient)
* Carter, et al, PoP 16,012304 (2009)



Turbulence and transport in LAPD
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® Broadband turbulence observed in edge (free energy from
pressure gradient (drift waves) and driven flow (e.g. KH)).
Exponential spectrum observed [Pace 2008]

® |arge plasma size allows perp. transport to compete with
parallel losses; profile set by perp transport; confinement
modification apparent in profile changes



Visible light imaging of LAPD turbulence

Fast framing camera (~50k frames per second, ~|10ms total
time), visible light (neutral He), viewed along B



Visible light imaging of LAPD turbulence

Fast framing camera (~50k frames per second, ~|10ms total
time), visible light (neutral He), viewed along B



Using biasing to drive cross-field flow

® FElectrode immersed in plasma, biased relative to
chamber wall (tokamak) or plasma source (LAPD)

® Cross-field current driven (e.g. via Pedersen
conductivity), provides torque to spin up plasma

® Following CCT, technique used widely to drive flow
and generate transport barriers: tokamaks (including
ISTTOK), stellarators, RFPs, mirror machines ...
[Weynants 92, Sakai 93, Boedo 02, Silva 06, ...]

® | APD biasing experiments provide combination of
precise flow control and extensive measurements to
provide detailed response of turbulence to shearing
required to validate theoretical models and simulations



Wall-bias-driven rotation in LAPD
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® Apply voltage to (floating) wall of chamber relative to
cathode




Wall-bias-driven rotation in LAPD

Discharge Circuit
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® Apply voltage to (floating) wall of chamber relative to
cathode

® Radial current in response to applied potential (cross-
field ion current due to ion-neutral collisions) provides
torque to spin up plasma, generates radial electric field




Transport barrier/profile steepening observed with
biasing

— No Bias

-. 175V Bios ® As bias exceeds a threshold,

confinement transition observed
(“H-mode” in LAPD)

1 ® Detailed transport modeling

6
+f shows that transport is reduced
2t to classical levels during biasing
| ]  (consistent with Bohm prior to
. ook (€) : rotation) [T.A. Carter, et al., PoP 16,

012304 (2009), J.E. Maggs, et al., PoP
(2007)]
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Threshold for transition is observed, appears to be
due to radial flow penetration
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® Profile steepening observed for
bias above a threshold value



Threshold for transition is observed, appears to be
due to radial flow penetration
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New variable aperture, biasable limiter enables
extension of driven flow studies

T—T Limiter
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® Variable aperture, for
these studies set to
52cm diameter

® Biased relative to the
plasma source cathode




Continuous control on edge flow/shear is achieved,
including flow reversal and zero shear state
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Confinement enhanced in both flow directions;
degraded at low shear
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Effect of driven rotation on turbulence:
visible imaging



Effect of driven rotation on turbulence:
visible imaging




Profile steepens, flux decreases with shearing rate
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Fluctuation power is reduced with increased shearing
and enhanced at low shear

l... Power (arb, log)
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Turbulent amplitude reduction dominates
transport suppression
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[ AN *“2s ] ® Density fluctuations drop
substantially, electric field
reduction weaker

® Crossphase largely
unchanged (distinct from
previous results: due to
lower shear?)

® Coherent mode
emerges, but causes no
net transport

® Compares well with
BDT, but shouldn’t apply!




Radial correlation length decreases with shear

Unfilled = EDD Flow
Filled = IDD Flow
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® Again, fits BDT theory surprisingly well; however, trend in
gradient scale length is similar

® Coherent mode dominates at higher shearing



Simulation of LAPD turbulence

Using BOUT++ 3D Braginskii two-fluid turbulence code.
LAPD plasmas are reasonably collisional: A¢;i ~ 20 cm, Apw ~
20m even though v ~ Vihe

® C(Collisionless effects important in LAPD: e.g. damping of
kinetic Alfven waves; interested in exploring models with
kinetic effects (Landau/gyrofluid, gyrokinetic)

Verified against linear instability [Popovich PoP 17, 102107
(2010)]

Initial comparisons to LAPD data [Popovich PoP 17, 122312
(2010), Umansky PoP 18,055709 (201 1)]

Convergence study performed [Friedman Con. Plas. Phys. 52,
412 (2012)]



BOUT++ Model Equations

N = —vg - VNo — NoVvje + un Vi N + Sy + {¢, N},
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® Electrostatic (correlated magnetic fluctuations in expt (drift
Alfven waves), but small)
® Artificial viscosity, diffusion used (close to Braginskii values

for viscosity, but scalar)



Experimentally consistent profiles used in
BOUT++ simulation
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® Density and temperature: fits from experimental data

® FLAT mean potential profile (relevant to no flow
experimental case); zonal flows allowed to develop

® Periodic boundary conditions used (simulations with
sheath boundary conditions underway)



Density FFT Power (arb)

Density Fluctuation PDF
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Not perfect, but encouraging similarity to
experimentally measured fluctuation characteristics
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Surprising result: saturated turbulence dominated by flute-like
(n=0) fluctuations (not consistent with linear drift waves)

2 2
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® Density and temperature: fits from experimental data
® FLAT potential profile (relevant to no flow experimental

case)
® Periodic boundary conditions used (simulations with

sheath boundary conditions underway)



BOUT++ turbulence visualization:
clear transition to flute-like modes




Direct energy injection into n=0 in nonlinear phase:
n=| modes are energy sink, not source!
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® Energy dynamics of turbulence evaluated: energy injection
from pressure gradient (and effective growth rate) positive
for n=0, negative for n=1 in saturated phase

® Nonlinear instability dominates even though linear instability
is present!



If Nn=0 modes removed artificially, very
different saturated spectrum produced

— Experiment
— +  Simulation

+ No n=0

10° 10* 10°
f (Hz)

® Spectrum more coherent (peak near fastest
growing linear mode)

® /onal flows are not removed



Nonlinear instability mechanism
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® Similar NL instability
observed previously in
tokamak edge simulations
[Drake, Biskamp, Scott, ...]

® May call into question the
use of linear/quasilinear
theory to predict edge
transport behavior?

® [uture work: effect of axial
boundary conditions

Friedman, et al. arXiv:1205.2337
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