Recent Doppler Backscattering Results from DIII-D

L. Schmitz¹

with G. Wang¹, J.C. Hillesheim¹, W.A. Peebles¹, T.L. Rhodes¹, A.E. White², J.C. DeBoo³, J.S. deGrassie³, G.R. McKee⁴, E.D. Doyle¹, L. Zeng¹, K.H. Burrell³, C.C. Petty³, J. Kinsey³, W.A. Solomon⁵, G.M. Staebler³, and the DIII-D Team

¹University of California-Los Angeles, Los Angeles, California 90095-1547, USA
²Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee, USA
³General Atomics, San Diego, California 92186-5608, USA
⁴University of Wisconsin at Madison, Madison, Wisconsin 53706, USA
⁵Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543-0451, USA

Doppler backscattering (DBS) is a versatile diagnostic tool for measurements of turbulence flow and density fluctuation levels in tokamaks. Two tunable DBS system have recently been installed and operated at DIII-D, including a two-channel DBS system (49 Ghz $\leq f \leq$ 72 Ghz) and a tunable five channel system (53 Ghz $\leq f \leq$ 78 Ghz), based on frequency modulation to obtain closely spaced probing frequencies around a carrier (inter-channel separation $\Delta f = 0.35$ GHz). Both systems can operate in O- and X-mode polarization.

DBS results provide experimental evidence that intermediate-scale turbulence (0.8 < $k_{\theta}\rho_{s} \le 2.5$) is reduced by at least an order of magnitude across the L- to H-mode transition in the core of high temperature, low density DIII-D plasmas ($0.4 \le r/a \le 1$, $T_{i}/T_{e} \ge 2$). Concomitantly, a very substantial reduction of the electron heat diffusivity across the minor radius, compared to L-mode values, is inferred from time-dependent transport analysis. Linear stability calculations (using the TGLF trapped gyro-Landau fluid code) indicate intermediate scale turbulence suppression by $E \times B$ shear for r/a < 0.5, and attribute the residual anomalous H-mode electron heat diffusivity to small scale ETG turbulence ($k_{\theta}\rho_{s} \ge 4$).

DBS is suitable for perturbative momentum transport studies and has provided initial measurements of the temporal evolution of $E \times B$ plasma flow with co- and counter-neutral beam injection. Doppler backscattering is also utilized to probe stationary and time-dependent shear flows (i.e. Zonal Flows). We present data which clearly indicate the presence of a quasi-stationary shear flow pattern near the q=2 surface in an L-mode electron transport barrier. Zonal Flow levels and Zonal Flow shear are anti-correlated with the amplitude of intermediate-scale density turbulence near the q=2 surface, suggesting that zonal flows play an important role in intermediate scale turbulence/transport regulation.

This work is supported by U.S. DOE under DE-FG03-01ER54615, DE-AC02-76CH03073, DE-FC02-04ER54698, and DE-FG02-08ER54984