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Abstract 
A 2D full-wave code in O-mode with Gaussian beams propagation and normal 
incidence is used to simulate radial correlation reflectometry. The radial correlation 
lengths estimated from reflectometry signals are then compared with the true values 
under a wide range of turbulence conditions. The scan in the radial correlation length is 

24.0/ 0 −≈λrL  whereas the scan in the turbulence level is 151/ −=nnrmsδ  %. Such 
scans allow us to study correlation reflectometry measurements both in linear and non-
linear regimes. Full-wave results show that in the linear regime radial correlation 
lengths satisfying 1/ 0 ≥λrL  can be estimated accurately from the amplitude signal. The 
transition between linear and non-linear regimes shows a marked decrease in the 
coherence of all reflectometry signals; close to the transition homodyne signal performs 
better. When non-linear effects become dominant radial correlation lengths are 
underestimated. Finally, an accurate measurement of radial correlation lengths shorter 
than the probing wavelength is not possible.  
 
I. Introduction 
The plasma is modelled as a slab with an average linear density profile in the radial 
direction (x-direction). Density fluctuations are added to the average density profile. 
The k -spectrum ( , )x yn k kδ  of density fluctuations is modelled as [1]: 
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where ,maxxk , ,maxyk  are the radial and perpendicular spectral widths of the turbulence, 
respectively, and the constant K  determines the spectrum amplitude. The radial 
correlation length is related to the spectral width via ,max2.1/cx xL k= . The parameters K , 

,maxxk , ,maxyk  determine the root mean square (rms) value of the density fluctuations via 
2 2

,max ,maxrms x yn K k kδ = ⋅ ⋅ . As shown in [2], the non-linear regime appears if the 
following criterion is satisfied: 
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where 0ϖ  is the probing frequency, c  is the speed of light in vacuum, cx  is the cut-off 
distance from the plasma edge, cxl  is the radial correlation length of the turbulence, 

rmsnδ  is the rms value of the turbulence and cn  denotes the density at the cut-off layer. 
Our previous numerical results on Doppler reflectometry [1] confirmed the validity of 
criterion (2) to distinguish between linear and non-linear regimes. Doppler 
reflectometry simulations were performed for different radial correlation lengths, cut-off 
positions and density gradients. The numerical results showed a linear relationship 
between the Doppler peak amplitude and the turbulence level at low turbulence levels 
followed by a non-linear regime. The transition between linear and non-linear regimes 
occurred at different turbulence levels depending on the radial correlation length as 



expected from eq. (2). However, the influence of the radial correlation length on the 
Doopler peak amplitude was shown to be mainly a consequence of considering rmsnδ  as 
the relevant parameter. When the spectrum amplitude of the density fluctuations K  was 
considered the transition between linear and non-linear regimes occurred close to 

1510=K  m-2 regardless of the radial correlation length. It was also shown that within 
the transition 1≈γ  was obtained. In this work we use γ  to study correlation 
reflectometry both in linear and non-linear regimes in the case of normal incidence. 
 
II. Simulations on correlation reflectometry. 
 
II. A. Linear regime 
Fig. 1 shows the coherence of different reflectometry signals (amplitude A , homodyne 

φcosA , complex amplitude φiAe , and complex phase φie ) as a function of the radial 
separation between the two reflectometer channels. The solid line represents the 
coherence of the input density fluctuations. Three different radial correlation lengths are 
considered: 4.0/ 0 ≈λcxl  (fig. 1a), 2.1/ 0 ≈λcxl  (fig. 1b), and 5.2/ 0 ≈λcxl  (fig. 1c). In 
all cases, the turbulence level is low enough to ensure that non-linear effects are 
negligible ( 1<<γ ). Fig. 1 shows that the amplitude signal performs better than 
homodyne, complex amplitude, and/or complex phase signals in estimating the radial 
correlation length. Accurate measurements of the radial correlation length can be 
achieved provided that 1/ 0 ≥λcxl  (figs. 1b and 1c). When 1/ 0 <λcxl  (fig. 1a) the 
amplitude signal overestimates the true value and accurate measurements of radial 
correlation lengths are not possible. Homodyne, complex amplitude, and complex phase 
signals decay slowly and overestimate systematically the true value by a factor larger 
than 2; the error is especially large if 1/ 0 <λcxl  (fig. 1a).  
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Coherence of different reflectometry signals in linear regime: amplitude (red), homodyne 
(green), complex amplitude (purple) and complex phase (blue) as a function of layer separation. The 
results are shown for radial correlation lengths (a) 4.0/ 0 ≈λcxl  ( 07.0=γ ), (b) 2.1/ 0 ≈λcxl  ( 13.0=γ ) 
and (c) 5.2/ 0 ≈λcxl  ( 18.0=γ ). The solid line represents the coherence of density fluctuations. 
 
The slow decay of the coherence has been observed with other numerical codes [3 - 5]. 
In [3] a 2D physical optics model predicts a very slow decay of the coherence for the 
phase signal at low turbulence levels. In [4] a 1D full-wave code confirms such slow 
decay of the coherence. The results are also compared with those expected from 
analytical theory showing a good agreement. The same behaviour is obtained in [5] 
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using a 2D code and the paraxial approximation. Analytical theory [6] explains the slow 
decay of the coherence in terms of the small angle scattering due to density fluctuations 
having wavenumbers lower than the inverse density gradient length. When such 
wavenumbers are removed from the spectrum the coherence becomes closer to the 
correlation of the turbulence as it has been found in [4]. This result indicates that 
scattering process takes place along the probing wave trajectory leading to a degradation 
of diagnostic localization. Interestingly, amplitude signal seems to be less sensitive to 
low radial wavenumbers than the others signals. This result was also observed in [3] 
with a 2D physical optics code. It was shown that the coherence of the power signal 
(amplitude squared) showed a faster decrease with radial separation than the phase 
signal. More 2D full-wave simulations are needed to investigate the validity of this 
result in more general situations. 
 
II. B. Transition from linear to non-linear regime. 
The increase in the fluctuation level has a pronounced effect on the estimated 
correlation length as shown in fig. 2. The results are shown for three different γ  values 
covering linear regime (fig. 2a), transition (fig. 2b), and non-linear regime (fig. 2c). All 
signals show a marked decrease in the coherence as the turbulence level increases. Note 
the abrupt change in the complex phase coherence when going through the transition 
(fig. 2a and fig. 2b). Close to the transition (fig. 2b) homodyne and complex amplitude 
signals perform better than the others signals and provide a good estimation for the 
correlation length of the turbulence. This result could be explained in terms of the 
destructive interference occurring at the receiving antenna due to the relatively high 
density fluctuations level. Destructive interference gives rise to low amplitude signals 
with incorrect phase values, not related with the movement of the density fluctuations. 
Homodyne and complex amplitude signals assign less weight to the incorrect phase 
values and their contribution to the coherence is smaller. In non-linear regime 
homodyne and complex amplitude signals still perform better than the others but the 
error is large and the correlation length is underestimated by a factor of 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Coherence of amplitude, homodyne, complex amplitude, and complex phase signals as a 
function of layer separation. The results are shown for three turbulence level (a) %1/ =nnrmsδ  
( 18.0=γ ), (b) %5/ =nnrmsδ  ( 62.4=γ ), and (c) %10/ =nnrmsδ  ( 49.18=γ ). The solid line 
represents the coherence of density fluctuations. 
 
The first attempt to study correlation reflectometry under high density fluctuation level 
was made in [7] using WKB approximation. This work showed a drastic decrease of the 
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coherence when the turbulence level increases. In [3] a 2D physical optics code shows 
the collapse in correlation length with increasing the fluctuation amplitude. Same 
behaviour is observed in [4] with a 1D full-wave codes. The fast decay of the coherence 
in non-linear regime (fig. 2c) is expected from non-linear theory [2]. The role of poorly 
localized small angle scattering, which is dominant in linear regime, can be neglected in 
this situation. At high turbulence levels, the fast decay of the coherence is explained in 
terms of the strong interference produced by the multiple cut-offs that exist within the 
plasma. Above some turbulence level threshold the two signals coming from the two 
reflectometer channels becomes statistically independent. As a result a strong reduction 
in the measured correlation length is obtained. Furthermore, according to non-linear 
theory the decay of the coherence is proportional to the density fluctuation level in the 
cut-off layer. Therefore, radial correlation reflectometry provides highly localized 
information about turbulence characteristics. 
Preliminary 2D full-wave results have shown that the estimated correlation length 
weakly depends on the perpendicular spectral width. However, more simulations are 
needed to improve our understanding of the perpendicular scale length effects on radial 
correlation measurements. In particular, 2D full-wave reflectometry simulations with a 
non-zero antenna tilt angle (perpendicular wavenumber selectivity) are underway. 
 
III. Conclusions 
Numerical simulations show that the measurement of radial correlation length 

1/ 0 ≥λrL  can be obtained accurately from the amplitude signal in the linear regime. 
Numerical simulations also suggest a possible method to help the experimentalist in 
determining if the measurements are performed in linear regime. Linear regime is 
characterized by a) the measured correlation lengths are larger than the probing 
wavelength and b) the correlation length of the amplitude signal is significantly shorter 
than the values obtained with other reflectometry signals. The transition from linear to 
non-linear regime shows a marked decrease in the correlation length estimated from all 
reflectometry signals. Close to the transition homodyne signal and/or complex 
amplitude will provide a better estimation. The transition has the following 
characteristics: a) the correlation length estimated from the complex phase signal is 
smaller than the estimated value from the amplitude signal and b) complex amplitude 
and homodyne signals give the largest values for the correlation length. In non-linear 
regime, radial correlation lengths are underestimated. This regime is characterized by 
similar values for the correlation length between amplitude and phase signals. Finally, 
the measurement of correlation lengths smaller than the probing wavelength is not 
possible.  
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