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Fluctuation reflectometry is widely used technique providing information on the tokamak 

plasma micro turbulence. Technical simplicity and operation at a single access to plasma are 

among its merits, which however cause interpretation problems related to localization of 

measurements and wave number resolution. In order to improve the fluctuation reflectometry 

wave number selectivity a more sophisticated radial correlation reflectometry (RCR), using 

simultaneously different frequencies for probing was proposed and developed at numerous 

magnetic fusion devices. The coherence decay of two scattering signals with growing 

difference of probing frequencies is studied in this diagnostic and applied for estimation of 

the turbulence radial correlation length in a very straightforward manner. Namely, it is 

assumed that the distance between cut offs at which the correlation of two reflectometry 

signals is suppressed is equal to the turbulence correlation length.   

However already in 1D numerical Born approximation analysis [1] a role of small angle 

scattering was shown, reducing the diagnostic spatial resolution and leading to a very slow 

decay of coherence in RCR. This effect was confirmed in RCR linear analytic theory in 1D 

and 2D model [2, 3], by 1D full-wave modeling [4] and 2D Born approximation computations 

[5] thus appealing for a more sophisticated RCR data interpretation.  

In the present paper an analytical integral formula expressing the RCR cross-correlation 

function (CCF) in terms of turbulence radial wave number spectrum is analyzed and a 

procedure of its correct inversion for the spectrum determination from the CCF is proposed.  

The feasibility of this spectrum reconstruction procedure is confirmed in 1D numerical 

modeling performed both in linear approximation and using the full-wave approach. The 

method possibilities are studied in conditions relevant for experiments. The procedure 

accuracy dependence on probing frequency range and resolution as well as on the poor 

statistics and presence of noise is investigated. 
 

The turbulence wave number spectrum reconstruction background 

We treat the RCR problem using 1D model describing the O-mode probing by equation 
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where ( ) ( ) ( )1 1c cn x n x xω ω=  is the background density profile supposed linear in this paper 

and ( )n xδ  stands for turbulent fluctuations assumed statistically homogeneous. In the 

analytical section we suppose the transparent plasma size ( )1cx ω  and the turbulence 

correlation length cl to be large enough to treat (1) in the WKB approximation. The 

corresponding solution takes a form of incident and reflected wave superposition 
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In the case the turbulence level is low enough, so that the reflected wave phase perturbations 

are small 
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Correspondingly, the RCR CCF is proportional to the phase perturbation correlation function, 

which may be expressed in terms of the turbulence wave number spectrum [2]. Finally the 

CCF takes a form 
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where ( ) ( )1 2c cx xω ω∆ = −  is the cut-off separation, 2nδ determines the density perturbation 

level, ( ) ( )2

0
exp

s
F s i dς ς= ∫  is a Fresnel integral and the spectrum 2nκ is related to the density 

fluctuation correlation function by expression 
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 The 1 κ factor entering the integral in (3) is responsible for underlining the contribution of 

small angle scattering off long scale fluctuations into the RCR signal. This singularity 

saturated only for 1cxκ <  due to the Fresnel integral behavior ( ( )F s s≈ at 1 s ) leads to a 

very slow decrease of CCF mentioned above that complicates the RCR data interpretation. 

The way to exclude this singularity and reconstruct the turbulence wave number spectrum is 

provided by the similarity of (3) and Fourier transform. Namely, it is possible to show that the 

relation inverse to (3) expressing the turbulence spectrum in terms of CCF takes a form 
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where the CCF of the scattering (reflectometry) signals As obtained using the heterodyne 

detection is determined as  
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Numerical reconstruction of the turbulence spectrum and CCF 

Here we shall analyze the accuracy of this inversion using the CCF computed numerically 

from (1) in the frame of full-wave modeling or Born approximation (the scattering signal in 

this case is given by expression 2
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= +∑  possessing wave numbers jq, random phases 

jϕ , and amplitude distributed in accordance with the turbulence spectrum 2nκ is used in 

analysis. The calculation parameters are as follows: 40cx cm= ; correlation length 2cl cm= ; 

11 1
1 6 10 cω −= ⋅  The averaging is performed over ensemble of typically 500 random phase 

samples. In the case of spectrum
2 2 42 cl

cn l e κ
κ π −= , shown in fig. 1a by red curve, the CCF  

calculated in the interval 20 20c cl l− < ∆ <  is shown in fig. 1b by the black curve. It is much 

broader than turbulence Gaussian correlation function (red curve in fig. 1b), asymmetric and  

possesses small, but finite 

imaginary part, shown by 

green line. As it is obvious, the 

CCF provides no information 

on the turbulence correlation 

function. Accordingly, the 

CCF spectrum obtained after 

extrapolation of the CCF to higher ∆  values is very peaked around the zero wave number, 

unlike the initial Gaussian spectrum. However after been treated in agreement with (4) its real 

part takes a form similar to the Gaussian (see black curve in fig. 1a). The oscillations of the 

reconstructed real part of the spectrum around the Gaussian one are produced by 

discontinuities of the extrapolation procedure at 20 cl∆ = ± . A smaller imaginary part of the 
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Fig. 1a.  The spectrum versus 
normalized wave number. 

Fig. 1b. The signal and 
turbulence CCF. 



reconstructed spectrum (shown by green line in fig. 1a) is oscillating around the zero line. 

Smoothing of these oscillations by integrating over a wave number interval results in a 

spectrum similar to Gaussian  

and possessing very small 

imaginary part, as it is shown 

in fig. 1a by blue and yellow 

lines, correspondingly. It is 

important to note that these 

oscillations originated by 

extrapolation procedure could be removed to the matching region 20 cl∆ = ± by performing 

Fourier transform of the reconstructed spectrum providing the turbulence CCF. The result of 

this transformation in the case of spectrum of fig. 1a is shown in fig. 2a. As it is seen there, 

the reconstructed real part of the turbulence CCF fits perfectly the initial Gaussian correlator 

at 2 cl∆ < . The finite value of the CCF imaginary part, as well as CCF random behavior 

at 2 cl∆ > should be attributed to imperfect averaging. As it is seen in fig. 2b, the level of the 

reconstructed CCF imaginary part as well as its real part at 2 cl∆ > is suppressed by increasing 

the averaging ensemble from 500 to 1000 and then to 10000 samples. Using the approach 

based on relation (4) we have also reconstructed a multi component spectrum shown in fig. 3a 

by red curve. The corresponding turbulence CCF shown in fig. 3b by red curve possesses a  

typical oscillatory structure.  The RCR CCF real part shown there by the blue curve is very 

different from the original one, however application of the reconstruction procedure based on 

(4) results in complex spectrum, real part of which fits well the original turbulence spectrum 

even without smoothing (black line in Fig.3a), whereas the imaginary one (green line in 

Fig.3a) oscillates around zero and is removed by smoothing. The Fourier transform of the 

obtained spectrum results in the perfect turbulence CCF reconstruction, shown in fig. 3b by 

the black curve. 

-10 -8 -6 -4 -2 0 2 4 6 8 10

-4

-2

0

2

4

6

8

10

12

14

k*lc

Sp
ec

tru
m

 Re Spectrum
 Im Spectrum
 Double Gauss

 
-5 -4 -3 -2 -1 0 1 2 3 4 5

-1500

-1000

-500

0

500

1000

1500

2000

2500

3000

∆/lc

 Re CCF
 Im CCF
 turbulence CCF
 RCR CCF

C
C

F,
 T

ur
bu

le
nc

e 
C

C
F

 
Fig. 3a. The turbulence spectrum. Fig. 3b. The turbulence CCF. 
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Fig. 2a. The turbulence CCF. Fig. 2b. The turbulence CCF. 



In the case of exponential spectrum 2 0.5 cl
cn l e κ

κ
−= , suppressed at small wave numbers, shown 

in fig. 4a by red curve, the CCF calculated in the interval 20 20c cl l− < ∆ <  is shown in fig. 4b 

by the blue curve. It is much broader than turbulence Gaussian correlation function (red curve 

in fig. 4b), asymmetric and possesses small, but finite imaginary part, shown by green line. 

Accordingly, the CCF spectrum obtained after extrapolation of the CCF to higher ∆  values is 

very peaked around the zero wave number, unlike the initial spectrum. However after been 

treated in agreement with (4) its real part takes a form similar to the turbulence spectrum (see 

black curve fig. 4a). The oscillations of the reconstructed real part of the spectrum around the 

initial one are produced by discontinuities of the extrapolation procedure at 20 cl∆ = ± . A 

smaller imaginary part of the reconstructed spectrum (shown by green line in fig. 1a) is 

oscillating around the zero line. 

 It is important to note 

that these oscillations 

originated by 

extrapolation procedure 

could be removed to the 

matching region 

( 20 cl∆ = ± in the present 

computation) by 

performing Fourier transform of the reconstructed spectrum providing the turbulence CCF. 

The result of this transformation in the case of spectrum of fig. 1a is shown by black curve in 

fig. 1b. As it is seen there, the reconstructed real part of the turbulence CCF fits perfectly the 

initial turbulence CCF describing not only the kernel of the CCF at 2 cl∆ < , but also 

oscillations caused by the 

spectrum discontinuity. 

In Fig. 4 we have 

performed reconstruction 

based on the signal CCF 

computed in a very wide 

signal frequency range 

corresponding to 

20 cl∆ ≤  not possible in the experiment. In Fig. 5 the reconstructed Gaussian turbulence 
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Fig. 4a.  The reconstructed 
spectrum versus normalized wave 

number. 

Fig. 4b. The signal and reconstructed 
turbulence CCF. 
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Fig. 5a. The reconstructed 

turbulence spectrum. 
Fig. 5b. The reconstructed  turbulence 

CCF. 



spectra and CCF are shown for the realistic case 2 cl∆ ≤ . As it is seen there, in spite of the 

fact the reconstructed spectrum (black curve) is different from the initial Gaussian spectrum 

(red curve) the obtained turbulence CCF fits the Gaussian well. The previous evaluation of 

the CCF used for the reconstruction in Fig.4 was performed with fine spatial resolution in a 

wide region (10000 points in the [ ]20 ,20c cl l−  interval), which corresponds to probing with 

the very detailed frequency resolution and in a very wide range not always possible in the 

experiment. In more realistic conditions of only 6 RCR measurements the reconstruction of 

the turbulence CCF is also possible, as we show in Fig.6 based on the RCR data obtained at 

2 cl∆ <  with the signal frequency cut off step 0.08 clδ∆ =  and 0.64 clδ∆ = .  

 Very important for the feasibility of the proposed procedure is its weak sensitivity to the 

experimental noise. As it is seen in Fig.7a and 7b, in the case of 10% SNR the reconstruction 

of the Gaussian turbulence CCF is possible with averaging performed over only 500 random 

turbulence samples, whereas in the case of 100% SNR 10000 samples are needed.  

The application of the developed procedure to the full-wave modeling of (1) using the 

numerical scheme described in [4] and following parameters: 

20cx cm= ; 0.25cl cm= ; 11 1
1 1.9 10 cω −= ⋅  also resulted in 

successful reconstruction of rectangular turbulence spectrum 

in spite of correlation length been smaller than the probing 

wavelength, as it is seen in fig. 8.  

 

 

Conclusion 

Concluding it is worth to underline that application of the proposed procedure to the 

turbulence spectrum and CCF reconstruction from the RCR data in numerical modeling have 
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Fig. 6. The turbulence CCF 
reconstructed at 2 cl∆ ≤  and 

0.08 clδ∆ = and 0.64 clδ∆ =  . 

Fig. 7a. The turbulence CCF 
reconstruction at 10% SNR, 500 

samples. 

Fig. 7b. The turbulence CCF 
reconstruction at 100% SNR, 

10000 samples. 

 
Fig. 8. The turbulence spectrum. 



led to very promising results in conditions relevant for experiments. The demonstrated 

possibility of fine reconstruction, at least in 1D geometry, is proving the procedure feasibility 

and appealing for further optimization and tests in 2D numerical modeling. 
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