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Fixed frequency reflectometry is used routinely to measure fluctuations of the plasma

density on magnetic fusion devices [1, 2]. The absolute value of the mean square density

fluctuation < δn2 > can be determined from the measured variance of the reflectometry

phase <δΦ 2>. However, while calculating the absolute value, two particularities ought to

be taken into account: Firstly, the efficiency of the density fluctuation δnκ in producing

the phase fluctuation δΦκ strongly depends on the fluctuation’s wavenumber κ. Secondly,

fluctuations of density in a fusion plasma have a broad wavenumber spectrum, which is

turbulent in general, but may also contain coherent parts due to MHD modes for example.

Therefore, the transfer function fT between <δΦ 2> and <δn2 > can vary considerably.

The function fT is determined usually by using numerical simulations of the microwave

propagation in a model plasma turbulence.

In this paper we present a validation of a full-wave simulation in 1D with analytic

expressions that have been derived [3] by assuming a model turbulence with given radial

wavenumber spectrum. The validation has two advantages: On one hand, it serves as a

benchmark for full-wave codes. On the other hand, it allows a derivation of fT from first

principles, which provides a sound physical basis for the whole measurement scheme.

In the following article we recall briefly the analytic expressions from [3] and we show

in a simplified geometry numerical (full-wave) results. We then proceed to compare both

and thus can verify all parametric dependencies. As a side effect we provide a criterion for

the longest wavelength of the model fluctuation that has to be included in the simulation.

Thereafter, we discuss a more realistic geometry with inhomogeneous fluctuation level

and an arbitrary density profile. The non-local interaction of the density fluctuations

with the microwave beam combined with the spatial inhomogeneity of the plasma density

make it necessary to use an inversion algorithm for < δn2(x) > . We also comment the

case when the measured <δΦ 2> are subject to error.

Analytical formulae

The fundamentals of the following equations are published elsewhere [3]. We use O-mode,

cut-off density nco = me ε0 ω2
0 e−2 and local refraction index N(x) =

√
1− ne(x)/nco . If a

microwave with the vacuum wavenumber k0 is launched into the plasma that contains a
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small amplitude, monochromatic plasma density fluctuation κx, then we obtain (1). An

average linear density gradient is assumed, and L being the length between the plasma

edge and the cut-off. The validity range of (1) is 0 ¿ κx < 2 k0 which is the backscattering

limit in a plasma. If κx is replaced with the effective wavenumber κeff , then the equation

(1) can also be used for a spectrum of density fluctuations. In the case of a Gaussian

spectrum δn2
κ ∝ exp[−l2cκ

2/4] the analytical solution according to [3] is displayed in (2).

<δΦ 2> = π k2
0

L

κx

<δn2 >

n2
co

(1) κeff =

√
π

lc

(
ln

[
8L

πlc

]
+ 0.711

)−1

(2)

The correlation length lc should be small compared to the system size L. Similarly, the

relative fluctuation level should be small to avoid secondary cut-offs |δn rms/nco| ¿ lc/L .

In order to minimise backscattering far from the cut-off, the Airy wavenumber should be

large compared to the width of the fluctuation spectrum : (k2
0/L)1/3 À l−1

c .

If the density and/or the fluctuation level profile are inhomogeneous and the spectrum

is still a Gaussian, we deduce

<δΦ 2> = π k2
0

∫ x̄c(k0)

xedge

G(x)
lc√
π

<δn2(x)>

n2
co

dx (3)

where x̄c(k0) is the position of the cut-off in the average density profile and G is a weighting

function. Far from the cut-off |x−x̄c| ≥ lc , G can be approximated by the reciprocal of the

refraction index squared. In the vicinity of the cut-off |x− x̄c| < lc the analytical solution

is only possible for a linear variation of N2, i.e. a linear density profile in O-mode :

Gfar(x) = N−2(x) , Gnear(x) = 2

√
π

lc
LN2 exp

[
−2(x− x̄c)

2

l2c

]
I0

[
2(x− x̄c)

2

l2c

]
.

Here, I0(s) is the modified Bessel function solving s2I′′0 + sI′0 − s2I0 = 0 , and LN2 is the

local gradient length at the cut-off. This definition of G is a good approximation for

arbitrary profiles, if the local gradient length LN2 does not change significantly within

the distance lc .

Full wave simulation

In order to simulate the reflectometry measurement, the Helmholtz equation for the elec-

tric field of the launched microwave is solved in the cold plasma approximation by using

a 4th order Numerov scheme [4]. The plasma density is n e = n̄(x) + δn(x, t) , where

the fluctuation δn(x, t) is modelled in wavenumber space and Fourier transformed. In

wavenumber space, we define the amplitude spectrum δnκ and use different sets of ran-

dom phases in order to produce the t individual ”snapshots” δn(x, t) . Since we do not

want to introduce an additional average value, we set δnκ=0 = 0. The value of the

wavenumber resolution ∆κ thus defines also the wavelength of the longest mode that is

present in the simulation. Finally, the simulated δΦ 2
FW (full-wave) is obtained from the

variance of δΦ(t) in a significant number (N ≈ 50000) of t .

With this choice of the simulation setup, δΦ 2
FW depends on ∆κ , since long wavelength

fluctuations are more efficient in producing phase fluctuations (Fig. 1). We observe that
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δΦ 2
FW is within 10% of its final value (∆κ → 0), if ∆κ ·L < 1 . This criterion can already

be demanding in terms of computing resources, given

the plasma dimension is large and the vacuum wave-

length is small.
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Figure 1: Simulated phase variance as a function of ∆κ.

Note that ∆κ stands for both the wavenumber resolution

and the wavenumber of the longest mode that is present in

the simulation box. Parameters that were kept constant:

f = 47 GHz, L = 58 cm, lc = 0.75 cm, Gaussian spectrum,

homogeneous fluctuation level δn rms/nco =0.001.

Hereupon, we compare <δΦ 2> from equations (1) and (2) with the corresponding sim-

ulation result in a linear density gradient and homogeneous turbulence. We verify the

parametric dependency of <δΦ 2> on k0, L, lc and δn rms =
√

<δn2 >. Figure 2 illustrates

that the results correlate properly. Systematic

deviations due to non-linear processes are ob-

served for relative fluctuation levels > 3%.
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Figure 2: Full scale comparison of the analytical

formula with full-wave simulation results. Cross

hair: f = c0k0/2π = 47 GHz, L = 58 cm, lc = 3

cm, δn rms/nco = 0.001 . Scan of single parameters,

keeping the others constant: + (blue) δn rms/nco =
0.0005 . . . 0.1 , 5 (magenta) L = 32 / 100 cm ,

◦ (red) f = 24/58GHz, × (black) lc = 1.0/4.5 cm.

The most general case that we would like to discuss comprises arbitrary profiles and

the corresponding formula (3). We also use a Gaussian spectrum and multiply the ho-

mogeneous data δn(x, t) with the pre-defined envelope function δn rms(x). Since the scale

lengths of δn rms(x) are usually large compared to lc , we neglect the effect on the spectrum.

In order to reconstruct <δn2(x)> from a set of δΦ 2
FW (different k0) we choose a least-

square fit procedure. The initial guess of <δn2(x)> is obtained from equation (1). In this

formula, for a given k0 we replace L with the local gradient length at the actual cut-off

position. Afterwards, we use equation (3) to recalculate <δΦ 2> and make the difference

to δΦ 2
FW subject to minimisation (Fig. 3a-c). The free parameters in this process are

the <δn2(x)> on the grid defined by the cut-off positions. Using linear interpolation in

between the grid points, we obtain a very satisfying result (Fig. 3c).

It is straightforward to study the effect of error in δΦ 2
FW. Varying one element of

the ’measured’ set δΦ 2
FW (Fig. 3d), we show the effect on the < δn2(x) > profile after

the fit (Fig. 3e). If several δΦ 2
FW are in error, then their contributions must be added

following the laws of error propagation. Figure 3e illustrates also the limited spatial range

of δn rms(x) which is affected by the error.
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Figure 3: a) Input density and fluctuation level.

b) Open circles: δΦ 2
FW, 17 different frequencies,

function of the corresponding cut-off location.

+ signs: <δΦ 2> reconstructed from the initial

guess of δn rms(x). Arrows indicate the differ-

ence that is subject to minimisation. c) + signs: initial guess of δn rms(x) (see the text body).

Blue squares: δn rms(x) from least-squares fitting of <δΦ 2> data. Solid red line: input δn rms(x).
d) Error in the δΦ 2

FW data, located at the plasma edge.

e) Effect of the error on the reconstructed δn rms(x), obtained numerically.

Conclusions

Using a 1D full-wave code we have successfully validated analytical expressions which

relate the phase fluctuations in O-Mode fixed frequency reflectometry to the absolute

value of the density fluctuation. If the profile of the fluctuation level is inhomogeneous,

then the phase fluctuations can be described accurately by an integral expression. With

this expression we demonstrated that the reconstruction of the fluctuation level profile can

be obtained from a set of phase variances measured at different frequencies. Furthermore,

the integral expression allowed us to study how uncertainty of the fluctuation level at the

plasma edge can contribute to the error of the fluctuation level measured at the plasma

center. Altogether we conclude that the measurement in the plasma center is robust.

Future work will discuss the extension of this comparison between analytical formulae

and numerical simulation to the X-Mode.
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