

Keep-in-touch meeting (May 08, 2019, 14:30)

Influence of N₂ on the asymmetric vibrating mode of CO₂

Loann Terraz

Instituto de Plasmas e Fusão Nuclear, Instituto Superior Tecnico, Universidade de Lisboa, Portugal

The effect of nitrogen addition in CO_2 cold plasmas is explored in this presentation, and more specifically, the influence of N_2 on the asymmetric population $CO_2(00^0v_3)$, in order to reach an energy-efficient dissociation involving non-equilibrium processes. Experimental results show a greater conversion rate of CO_2 into CO when N2 gas at room temperature is added to the plasma. Experiments are performed in non-thermal plasmas sustained by DC pulsed discharges, for pressure and current ranges of [1; 5] Torr and [20; 50] mA, respectively. A self-consistent model, previously validated for pure CO_2 discharges, is further extended to take into account e-V, V-T and V-V reactions involving N_2 . The presentation focuses on the validation of the model, as well as the choice of the databases, by comparing the time-resolved densities of $CO_2(0v_2^{12}0)$ and $CO_2(00^{0}v_3)$ between experimental results and modelling ones.