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Resumo

Nesta tese propõe-se um sistema de localização para véıculos móveis, sem sensores a bordo,

no interior de edif́ıcios. A parte sensorial consiste numa rede de scanners laser instalados

em determinados pontos do edif́ıcio. Um sistema deste tipo pode ser necessário quando

as caracteŕısticas do véıculo, ou da sua função, não são apropriadas para a instalação de

sensores directamente na sua estrutura.

Para a parte sensorial foi desenvolvido um método para optimizar o posicionamento dos

sensores no edif́ıcio. Melhorando a disposição da rede sensorial melhora-se a qualidade da

informação recolhida. Tirando partido desta informação, dois métodos de localização foram

testados, um baseado no filtro de Kalman estendido, o outro no filtro de particulas. Ambos

foram estudados e comparados, em ambiente de simulação, quanto ao seu desempenho e

fiabilidade. Foi analizado o impacto da configuração da rede sensorial no sistema, avaliando

assim a robustez a diferentes disposições dos sensores e eventuais avarias em alguns deles.

Dos ensaios realizados, o filtro de particulas é a aproximação mais fiável para este tipo de

aplicação, a estimação da posição do véıculo é feita com uma boa precisão, é robusto a falhas

de sensores e, depois de falhas generalizadas, como por exemplo uma falha de energia, local-

iza globalmente o véıculo num curto peŕıodo de tempo. Os resultados, embora simulados,

são bastante promissores para uma futura aplicação numa plataforma real.

Palavras-chave: Localização, Veiculos móveis autónomos, Rede de Sensores, Scanners

laser, Fusão de dados.
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Abstract

This thesis propose a localization system for mobile vehicles, without sensors on board, in

indoor environments. The sensory part is a network composed by laser scanner sensors

placed in defined points on the building. This system is useful in cases where sensor instal-

lation directly on the vehicle is not advised, due to his or his job characteristics.

An optimization method was developed to place the sensors on the building. Improving the

network disposition on the building, the quality of gathered information increases. Using

this information, two localization methods were developed and tested, one based on extended

Kalman filter, and other on particle filter. Both were studied and compared, in simulation

environment, concerning their performance and reliability. It was analyzed the impact of

sensors disposition on the building in the localization system, evaluating the robustness to

different sensor configurations, including a possible fail of some of them.

From the experimental results, the approach that suits better this application is the par-

ticle filter localization method, the resulting estimations have good precision, it is robust

to sensor failure and, facing a general failure, like power failure, it manages a short time

global localization. Although these conclusions are based on simulation, the method shows

promising results for a future real application.

Keywords: Localization, Autonomous Mobile Vehicles, Sensor network, Laser scanners,

Data Fusion.
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Chapter 1

Introduction

1.1 Motivation

One of the biggest technological challenges in the present is the production of clean energy,

with small environmental impact but still supplying the ever growing consumption. Atomic

fusion has potential to be a suitable alternative, it has the capability to generate abundant

energy, releasing no carbon dioxide or greenhouse gases.

International Thermonuclear Experimental Reactor (ITER) is an experimental fusion reac-

tor, used to test this process, and prove if this kind of energy generation is practicable. It is

an investigation work shared by many countries, E.U.A., Russia, E.U., China, Japan, India

and Republic of Korea, representing, together, more than half the world’s population. ITER

facilities will be built in Cadarache, Southern France, and are expected to be ready in 2019.

ITER operation is based on an central component, the tokamak, that generates energy us-

ing nuclear fusion of Deuterium and Tritium atoms, two isotopes of Hydrogen, this reaction

reaches very high temperatures, forming a plasma. This plasma is kept in a Vacuum Vessel

(VV) away from walls trough a very powerful magnetic field. The heat generated by the

fusion reaction is used to generate electrical energy. The Tokamak must be protected, the

Blanket is a layer that covers all the inside walls of VV providing protection from heat and

radiation.

During ITER operation, maintenance actions, like inspections or component replacement,

are necessary, and can only be made remotely, due to rad-hard conditions. The transporta-

tion of robotic operators and spare parts to the maintenance site is required and is a crucial

task on tokamak maintenance.All this equipment is transported inside a shielded cask by a

remote controlled vehicle, the Transfer Cask System (TCS) through narrow corridors. This

is a very hard task because the operator cannot be present and can only see the vehicle

through a video surveillance system. A more accurate method to drive TCS is necessary

due to the tight safety margins inside the building.

The proposed solution is a localization system that gives a precise estimation on the vehicle

position and orientation. The estimation can be used either, to help a human, operating

remotely, or to implement an autonomous guiding system.

A specific propriety of the vehicle task, the radiation load, gives an unique specification for

15



the localization system, vehicle must be kept without sensors. The main radiation source is

the vehicle load, so it is not advised to install sensors in the vehicle because the radiation

would rapidly damage his electronic hardware.

The solution is to strategically install sensors on the building, where the radiation has lower

levels due to building shield and, since the sensor is static, is easier to shield sensor parts to

reduce the exposure.

The sensors selected to observe the entire operation area are Laser Range Finder (LRF)

sensors, these are precise and accurate from short to long ranges, the measures have no

interference from the magnetic fields on the tokamak and sensor’s electronic part exposure

to radiation can be minimized, leaving only the mirror exposed, which is suited to the pro-

posed problem. Various LRF sensors are required to avoid not covered areas, occluded by

scenario obstacles. The main problem to solve is to estimate the real vehicle pose based on

measurements acquired by the distributed sensor network.

Remote handling systems in ITER are crucial to the entire system performance, they will in-

fluence directly the maintenance tasks duration, and with more maintenance time comes less

energy production time, rising the cost of each maintenance intervention. A well designed

remote handling system is required to minimizing these costs maximizing the production

time.

Although the motivation is the localization in ITER scenarios, this localization system is

suitable to other indoor scenarios, providing an accurate localization to autonomous vehi-

cles.

Figure 1.1: ITER Tokamak building and Transfer Cask System
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1.2 Scientific Context

Localization problem is well known in robotic field due to his importance in task execution,

in particular, for guidance of an autonomous vehicle.

Methods for localizing moving vehicles attracts researchers since the beginning of robotics,

with the efforts applied in this area, together with sensor and processing evolutions, these

methods are becoming very accurate and powerful.

Depending on the application and resources, many localization techniques are available,

the Extended Kalman Filter (EKF) is often used with this propose, despite his limitations

to gaussian models it has very good results in a great variety of problem, with few com-

putational effort, [2], Monte Carlo (MC) methods such as Particle Filters (PF) ([9], [15]),

are becoming the new leading techniques, with evolution in processors the computational

weight of particle filters are less concerning facing the major benefices, as the non-gaussian,

non-linear models supported. Grid based localization methods,[29] are not suited for this

problem since they are based on discretization of the state space, to have some accuracy,

require very large memories.

General applications of these methods depends on sensors mounted on board of the vehicle,

the main difference to our solution is the constraint of leaving the vehicle completely sensor

free. The problem shifts completely with this imposed change, normally the vehicle observes

the surrounding environment, in this problem, a distributed sensor network observes the ve-

hicle and the surroundings simultaneously. Some localization systems with this principle

have been implemented, with a sensory network estimating the correct pose of a moving

element, typically resorting to vision sensors.

With the evolution in the vision field there are some investigation on performing localization

with a set of cameras [21], there are also current research on estimating position with other

types of equipment, for instance using WiFi [3] or RFID technologies [4].

The above techniques are not suited for the present problem, the requirements dictate that

an external sensor network is needed, and observing the vehicle, the camera network, WiFi

or RFID implementations are not very reliable and have low accuracy.

The sensors that will be used on this work are state of the art Laser Range Finder (LRF),

these sensors can measure several distances to obstacles with great accuracy at long ranges,

with numerical output, easy to process than images from cameras, for instance. Other ad-

vantage is the possibility to expose only the mirror to radiation, increasing the lifetime of

sensor electronic parts. These kind of sensors are applied in obstacle avoidance in industry

and on localization methods as well ([31], [36]), with sensors mounted on the vehicle. But,

for this approach, it is required a network of laser sensors mounted on the building.

The LRF network is a crucial part of the localization system, the layout of such network will

play a major role on the system’s performance, so, each sensor placement on the building

should be optimized according some criteria. To optimize these placements, a very large and

complex set of possible sensor positions is analyzed, requiring MC optimization methods to

do so, such as Genetic Algorithms (GA) or Simulated Annealing (SA) [37]. Optimization

techniques are constantly evolving as the quest for better and faster algorithms. The se-

lection for SA, in this approach, is based on algorithm simplicity, and capability of deliver
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good and fast results when compared to more complex algorithms.

1.3 Thesis Objectives

To achieve the main objective of this thesis, the development of a localization system for

mobile vehicles without sensors, is required the design of a distributed sensory network that

observes the vehicle at all time and an algorithm to estimate vehicle pose from data retrieved

by the sensors. For network definition an algorithm for optimizing the coverage areas of

sensor network is implemented, Chapter 2 focus on this optimization process, discussing

evaluation criteria and optimization algorithm and results.

The main objective is the development of a robust localization system, with acceptable error

margins and high performance, capable of localizing a moving vehicle with no sensors on

board. Chapter 3 addresses the development and comparison of two localization algorithms

to choose the better suited for this kind of implementation. The effects of sensor placement

in localization performance are studied on Chapter 4, where the importance of optimization

for the overall system is evaluated.

Up to date a similar work on localization with laser range finder laser network mounted

on the building, with a mobile vehicle completely free of sensors, was not found, only similar

approaches with cameras [21].

It is an innovative technique that allows a localization with sensor free robot, with further

work may be suited to multiple vehicle localization as well, with no need for more sensors.

This have huge applications on industry and logistics as the common Autonomous Guided

Vehicle (AGV).With this technique, AGV have no longer a restricted trajectory, with a

stripe or cable on the floor, trajectories can be changed only in virtual space keeping exactly

the same sensor network and the same vehicles.

This system is also very robust to electromagnetic noise as it work with lasers, exterior

perturbations have little effect on the system to, as the sensor can be shielded almost entirely

leaving only the mirror exposed, this is an important feature due to major electromagnetic

fields inside ITER.
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1.4 Thesis Outline

Thesis is divided into three parts, the dimensioning and optimization of sensory network,

the sensor data processing stage, that actually localizes the vehicle given the measurements

retrieved by the sensors and the evaluation of the effects that sensor placement have on

localization performances. Chapter 2 focus with the optimization of sensor placement, some

criteria are discussed and the most important one, the coverage, is optimized, generating

several networks for different scenarios. Simulated Annealing algorithm is explained and

used to optimize sensor networks and some experimental results are shown.

Vehicle Localization is addressed in Chapter 3, using a previous dimensioned network, two

methods for localization are tested, EKF and a PF, some adjusts and heuristics are de-

veloped, to achieve better performances, and the global system performance is evaluated

through experimental results obtain in simulation.

Chapter 4 shows some results and comparisons between different network performance on

localization, what is the effect of a non-optimal network in the localization output, variations

with the number of sensors. In this chapter the importance of optimization criteria will be

evaluated, based on resulting performances with different sensor networks. Conclusions and

future work proposed are exposed in Chapter 5 it has a final review of the work done, his

applicability on real world situations. Future work and open issues are left open for further

investigation trying to increase system’s capabilities and robustness.
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Chapter 2

Sensor Placement Optimization

2.1 Problem Statement

Guiding autonomous vehicles to navigate to a given goal position requires a well designed

positioning system. Inside a building with narrow spaces, maneuvering a vehicle is a hard

problem, so the pose (position and orientation) estimation must be accurate and precise.

In general, vehicle estimates his own pose using on board sensors. The proposed solution

uses building installed sensors, while the vehicle has none.

To implement this location system, it is crucial that the sensor network covers the entire

scenario, avoiding occlusion situations. Indoor environments have, typically, many obstacles

creating occlusions, only one sensor can never cover the entire area. To have a complete

coverage of the environment is required a group of sensors with different configurations.

Optimizing these configurations is crucial to the systems performance.

This Chapter proposes a method for optimizing sensors’ placements, maximizing the cover-

age, with the goal of minimizing the amount of sensors to be installed.

The sensor coverage in an indoor environment is similar to the art gallery problem stated by

[7]. This problem inquires how many observation points are necessary to cover an entire area

with a given number of walls. This is a NP-problem as proved by [1]. Any solution to these

problems is very fast to verify but there is no fast solution known. The difficulties in opti-

mization on a visibility problem like this are known, and some approximate solutions have

been proposed, applied usually in visual sensors [33], like cameras in surveillance systems

like [10]. There are developed methods to optimize coverage areas and enhance performance

of visual sensors network ([23], [24]). The improvement of visual sensor network coverage,

like surveillance cameras [39] have similar optimizing difficulties, the main constraints are

the same, the occlusions in indoor environments. A preliminary study on LRF network cov-

erage is addressed in [11], it describes the optimization framework presented in this thesis.

To optimize the sensor placement is required a map of the scenario. The map is a simplified

2D layout since, usually, the vehicle operates on floor level. This way the map of the scenario

consists of 2D cartesian points MP , defining the corners and a set of edges connecting these
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points ML (2.1).

MP =


p1

...

pN

 =


p1x p1y

...
...

pNx pNy

 ,ML =


i1 f1 v1

...
...

...

iM fM vM

 (2.1)
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9 p9 9 10 T
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11 p11 11 12 F

12 p12 12 9 F

Figure 2.1: Example of map representation

The map is built from a set of N points MP , and M lines, ML. Each point is represented

by his coordinates px and py. ML is the set of walls on the map, each one with an initial and

a final point, i and f are the indexes of those points in the set MP , respectively. v is a flag

stating if the sensor can be installed on that wall or not. Figure 2.1 presents a simple map

with the respective definition, including points, walls and flags. Map is basically a polygon

with holes; the exterior polygon is a sequence of points in counter clock wise (CCW) it

represents the outer walls and corners. Holes represent obstacles, smaller polygons inside

the exterior one. Each one is a sequence of point in clock wise (CW).

The sensor state ŝ (2.2), is composed by λ ∈ [0, 1], a parameter of sensor position along the

wall, θs, the sensor orientation, β, the wall where the sensor is installed and Φs, the sensors

Field of View. With λ = 0 the sensor is installed in the initial point of wall β, as λ grows

sensor moves along the wall reaching λ = 1 in the final point. This coordinate system was

defined as wall coordinate system, as it references the sensor position with respect to walls

on the map. On the approach followed in this work, the LRF sensor is always installed on

walls, being these the static parts of the environment, so the definition of this particular

coordinate system.

ŝ =
[
λ β θs Φs

]T
(2.2)

A transformation between wall coordinates and cartesian coordinates, defined as T (ŝ) (2.3)

that generates a new state, ŝcart in cartesian coordinates that is useful to export the sensor
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placement resulting from optimization.

ŝcart = T (ŝ) =


x̂s

ŷs

θs

Φs

 =


[
piβ

]T
θs

Φs

+ λ


[
pfβ − piβ

]T
0

0

 (2.3)

θs

Φs

x

y

piβ

pfβ

wallβ

(x̂s, ŷs)

λ

Figure 2.2: Sensor state representation

Including multiple sensors a tuple of sensor states ŜL or ŜLcart is compiled (2.4 and

2.5) including a state for each sensor. L is the total number of sensors used by the sensory

network and it is defined prior to the optimization step. The variables to optimize are

only the sensors’ placements. For each L there’s an optimal sensory network configuration

respecting given criteria, shown in section 2.2.

ŜL =
{
ŝ1, . . . , ŝL

}
(2.4)

ŜL cart =
{
T (ŝ1), · · · , T (ŝL)

}
(2.5)

The areas where a sensor can be installed on the map must be predefined before the

optimization, they represent optimization constraints that should not be neglected. A Sensor

State Space ŜSS defines the possible configurations for sensors. During optimization, each

sensor state, ŝ, belongs to ŜSS.

The ŜSS is defined as a path traveling trough all map walls with exception for walls marked

with the flag v = False represented with dashed lines on Figure 2.1. Some lines on the map

could not be representing solid walls, and could not be prepared for sensor installation, they

could be representing removable obstacles, doors, etc...

Given the framework of the problem, the optimization must compute the optimal placement

for L sensors inside a given map {MP,ML} with his respective restrictions.
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2.2 Optimization Criteria

To optimize the sensor placement on a given map, we should define a criteria that distinguish

the best solution from the others. Normally a evaluation function where the best solution

corresponds to an global extreme. Defining these criteria and evaluation function is not

trivial and should consider the actual objectives and application of the problem that is

being optimized.

The objective of our optimization problem is to find the best placements for LRF sensors

inside an indoor scenario. The application of these sensor network is to localize a vehicle

traveling inside that same scenario and guarantee and accurate and precise localization

prediction for all vehicle’s possible positions.

2.2.1 Coverage

The most important criteria seems to be the coverage that the sensor network have on the

map. Since the localization system must be valid at all possible positions, it is logic that

it must cover the entire scenario or else,when the vehicle travels to an hiding zone, with no

sensor readings,there is no way to localize it. This is a very dangerous situation due to the

risk of collisions between the vehicle and the scenario. If the system lose track of the vehicle

it can no longer control it correctly, keeping it in the correct trajectory.

We establish that the percentage of the total map area seen from the sensor network was

the best way to measure coverage. The optimization process consists in the maximization

of this percentage having the sensors positions has variables.

Single Sensor Coverage

Starting with a single sensor network (L = 1), we must define a sensor state space (ŜSS)

to evaluate coverage. ŜSS is the sensor path that contemplates the entire map wall space,

with exception to the ones marked with the flag v = False on ML array, dashed lines on

Figure 2.3. The path direction on the exterior map walls is CCW, while in interior walls is

CW. λ parameterizes translation on the path and it always grows from 0 to 1. Rotation is

also contemplated by the path since the majority of LRF lasers in the market have a FoV

equal or greater that 180◦ (Φ ≥ 180◦). ŜSS path is composed by two major segments, the

translation along the walls and the rotation in corner points as shown in Figure 2.3. To

evaluate coverage globally, the sensor state (ŝ) follows the path ŜSS, which guaranties that

it visits all possible states.

Poly(ŝ) = Poly(ŝ,MP,ML) =
[
a1 a2 · · · aK

]T
=

[
x1 x2 · · · xK

y1 y2 · · · yK

]T
(2.6)

The best way to measure the coverage of a sensor is building a polygon, the visibility

polygon (V P ), from the geometry of the problem. This defines the area covered by a sensor,

respecting occlusions imposed by environment obstacles. A function Poly(ŝ,MP,ML) (2.6)

is defined to build V P from sensor state, ŝ and map layout {MP,ML}. For notation

simplicity the map parameters {MP,ML} can be omitted. It returns an array defining the
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START

END

Figure 2.3: Sensor state space example

vertexes of V P in CW (Figure 2.4). Visibility polygons are always star-shaped as defined

in [26], meaning that the entire polygon can be seen from at least one point inside itself,

having no holes.

Function Poly(ŝ,MP,ML) is implemented through an computational algorithm based on

simple geometry and algebra. This algorithm as two major function inside:

Poly(ŝ,MP,ML)

ŝ

(MP,ML)

a1a2

a3

a4 a5

a6

a7
a8 a9

a10

a11

a12a13

Figure 2.4: Visibility Polygon extraction

Intersect(ŝ, c, w,MP,ML) - This function is the core of the algorithm, it makes the inter-

section between two line segments, one going from sensor position, defined in ŝ, to

a map point defined in MP , called in this context as corner (c), and other segment

defined in ML as a map wall (w). In the end it returns two values that parameterize

the intersection (2.7). Evaluating the combination between these two values it is pos-

sible to know the point of intersection n (2.8) and evaluate the situation as described

in Table 2.1. Figure 2.5(a) presents some possible situation with different map walls,

while Figure 2.5(b) parameterizes those situation to (γ1,γ2) axes. From Table 2.1 it

can be concluded that the areas of interest are in stripes, parameterizing, as example,

walls 2 and 5. The other areas are irrelevant to the algorithm implementation as they

represent walls that do not cross the line of sight between sensor and the point c.
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[
γ1

γ2

]
=

[
cx − x̂s pfwx − piwx
cy − ŷs pfwy − piwy

]−1 [
piwx − x̂s
piwy − ŷs

]
(2.7)

[
nx

ny

]
= γ1

[
cx − x̂s
cy − ŷs

]
+

[
x̂s

ŷs

]
(2.8)
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Figure 2.5: Intersect() typical situations

Table 2.1: Intersect() typical situations description

Walls (w) (γ1,γ2) Description

1,6 γ2 < 0 Walls are outside the line of sight

2
0 ≤ γ1 ≤ 1 Wall is in the line of sight blocking the visibility

0 ≤ γ2 ≤ 1 between the sensor and corner (c)

5
γ1 > 1

Wall is in the line of sight behind corner (c)
0 ≤ γ2 ≤ 1

3,4 γ2 > 1 Walls are outside the line of sight

7,8,9 γ1 < 0 Walls behind the sensor, outside the line of sight

With these two values, points of the map are classified whether they should enter to

VP array or not, or even if some new points should be added.

Side(ŝ, c,MP,ML) - Side function is used to classify the corner (c), depending on this

classification the results from Intersect() have different outcomes as described in Table

2.2. This classifier has also impact on the order the points are added to V P array.

Figure 2.6(b) presents example of possible classifications, and match them to Table

2.2. Cross product is the main operation on this function, it tells where are the points

with respect to the line of sight (2.6(a)), if they are on the right, middle or left (2.9).

On the current map construction, we assume each point to be part of two walls, so it is

connected directly to other two points (neighbors). These points are used to compute

Side() that will pay a important role defining which points to include in V P and in

which order.

Some situations may have ξ = 0 for one of the neighbors, in this case the Side() value
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is equal the sign of the other neighbor’s ξ.

ξ =

∣∣∣∣∣ cx − x̂s cy − ŷs
pjx − x̂s pjy − ŷs

∣∣∣∣∣ ,


right, ξ < 0

middle, ξ = 0

left, ξ > 0

(2.9)

ŝ

c1
ξ >

0

ξ <
0

ξ =
0

(a) Side() cross product

c1

c3 c2

p1
p2

p3p4

ŝ

n3

n1

(b) Side() example situations

Figure 2.6: Side() typical situations

Table 2.2: Side()typical situation description

Corner Connect ξ Side() Description

c1
p1 < 0

−1
Can see n1 behind corner. Put n1 in V P .

p2 < 0 First n1 and then c1 to respect CW order.

c2
p2 < 0

0
Can not see behind corner..

p3 > 0 Include only c2 in V P .

c3
p3 > 0

1
Can see n3 behind corner. Put n3 in V P .

p4 > 0 First c3 and then n3 to respect CW order.

Using these functions, the algorithm to extract V P is described in Table 2.3. It returns

a polygon with vertexes perfectly align with the map points, because it is extracted directly

from map coordinates and not by methods of discretization, like ray-cast from the sensor

position. Although much simpler, this method introduces error of discretization.

An example of the implemented algorithm is shown in Figure 2.7. It begins by adding the

points defining the wall where the sensor is installed, and the sensor itself (a12,a1, a2), next it

chooses c1 as corner because it is the first in CW ordering,discovering a point behind the cor-

ner (n1). n1 and c1 are added to the array by this order because Side(ŝ, c1,MP,ML) = −1.

Next it evaluates corner c2, this is not added because it is occluded with a map wall, the

same applies to c3, c4 is added next, alone, because it is not occluded by any wall but

Side(ŝ, c4,MP,ML) = 0, no points behind him can not be seen. Same strategy is applied

to all corners in the map by CW order being the algorithm result shown in 2.10. This is

only a simplified example to understand the algorithm.

Poly(ŝ,MP,ML) =
[
a1 a2 n1 c1 c4 c5 n5 c6 c7 n8 c8 a12 a1

]T
(2.10)
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Figure 2.7: Optimization Algorithm example

This algorithm can be applied to any sensor state defined in ŜSS, for each one, there is

an associated visibility polygon (V P ) and his respective coverage area. This area (C(ŝ)) is

computed using V P vertexes (2.11). As the sensor state changes along ŜSS the coverage

is shown in a Coverage Graph (CG). CG is shown in percentage of total area, as the actual

building’s dimensions are not important for this evaluation.

To compute CG, ŜSS must be discretized, since the visibility polygon computation is a

slow operation, and should be performed off-line to accelerate the processes afterwards.

This discrete set of sensor configurations is called ̂dSSS, for each distinct state on this set,

there is an index (Tag) that identifies it. Tag introduces a sense of sequence of sensor

states, this is the same sequence followed by ŝ on path ŜSS. CG is a graph showing the

area covered by sensor depending on Tag and includes two types of segments, translation

segments if the difference to next state is just a translation of sensor position, and rotation

segments if the difference is in orientation, on corners. Figure 2.8 is the CG for the map

example of Figure 2.3.

C(ŝ) = Area(Poly(ŝ)) =
1

2

K−1∑
i=0

(xiyi+1 − xi+1yi) (2.11)
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Figure 2.8: CG example
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Table 2.3: Poly(ŝ,MP,ML) Algorithm

1. Organizes MP points CW with respect to sensor position (x̂s,ŷs);

2. Excludes map points outside the FoV;

3. Initialize an empty array Poly(ŝ,MP,ML);

4. Include, the polygon limit vertexes, limited by FoV, in the array;

5. For each map point (c):

(a) Calculates Side(ŝ, c,MP,ML);

(b) For each map wall (w):

i. Calculates Intersect(ŝ, c, w,MP,ML) between segment (from sensor to cor-

ner) and map wall (w);

ii. If the wall occludes the corner, break cycle, if not, registers the closest inter-

section (n);

(c) If the c is on a side, (Side() = 1 ∨ −1) the corner(c) and the closest intersection

(n) enter the array in CW order as described in Table 2.2, if the point is in the

middle (Side() = 0), only himself (c) enters the array;

6. Export the array.
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Multi Sensor Coverage

Due to occlusions one sensor is not enough to cover the entire area. To overcome this

problem there is the need to build a sensor network formed with multiple sensors with

different configurations. This network is described by a tuple1, ŜL (2.4), it places L sensors

on the scenario, with placements dependent on optimization of network coverage. The set of

all possible network configurations is the set of all possible tuples with length L, this results

from combination of L paths ŜSS, called ŜSS
L

(2.12).

To optimize the network, the polygons obtained earlier, for a single sensor, can be used, as

the possible sensor poses are the same. The main difference in this section is that a logic

operation between this polygons must be performed. The coverage area (2.13) is obtained

from the union between the polygons corresponding to the states in tuple ŜL.

ŜL = (s1, ..., sL) ∈ ŜSSL, if s1,...,L ∈ ŜSS (2.12)

C(ŜL) = Area

 L⋃
j=1

Poly(ŝj)

 , ŝj ∈ ŜL (2.13)

Polygon union is performed with an union boolean operator, described in [8], that return a

polygon or a set of polygons corresponding to the coverage area from all L sensors. Coverage

area is the main criteria to maximize in this problem, uncovered areas are not allowed in

most problems, because once the vehicle enters those, there is no way to localize it.

2.2.2 Redundancy

Redundancy is important for a system that must overcome unexpected failures during oper-

ation. One of those failures can be the malfunction of a sensor, and so having areas covered

by more than one sensor could be important. One way to measure redundancy on this

system is exactly the area covered by more then one sensor. The problem is to compute

these areas, they are normally disconnected polygons, resulting from an intersection of two

or more visibility polygons. To define these areas an operator RD(ŜL), 1 < D < L is defined

in (2.14), it depends on the network configuration (ŜL) and on the degree of redundancy

desired (D). D defines how many sensors, at least, cover the area returned by RD(ŜL). ŜD

is a set of D sensor states, generated from the states in ŜL. Pκ=D(ŜL) is a set containing

all possible combinations of D sensor states.

The area covered by, at least, 2 sensors (2.15) is the most direct redundancy operator, for

simplicity, when D is omitted corresponds to D = 2. As the number of sensors grows the

complexity to extract these areas grows as well, becoming very difficult to compute them.

Figure 2.9 show the complexity of this operation for only three polygons.

RD(ŜL) = Area


#Pκ=D(ŜL)⋃
ŜD∈Pκ=D(ŜL)

[
D⋂
u

Poly(ŝu)

] ,

ŝu ∈ ŜD ⊆ ŜL
ŝi, ŝj ∈ ŜD

ŝi = ŝj ⇒ i = j

(2.14)

1Set of sensor states, one state for each network sensor, in practice it is a vector of L Tags
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R(ŜL) = R2(ŜL) = Area

⋃
i 6=j

Poly(ŝi) ∩ Poly(ŝj)

 , ŝi, ŝj ∈ ŜL, (2.15)

A

B

C

A ∩B

A ∩C B ∩C

A ∩B ∩C

R2(Ŝ3) = (A ∩B) ∪ (A ∩ C) ∪ (B ∩ C)

R3(Ŝ3) = (A ∩B ∩ C)

Figure 2.9: Extraction of Redundancy Polygon

As L grows, the number of combinations between polygons grows as well, making R(ŜL)

very hard to compute for a large number of sensors. Another way to compute this function

is using a MC method, this gives a approximation of R(ŜL) and is easier to compute.

This method consists of generating several points, uniformly distributed on the scenario

and evaluate, for each point, if it lies inside each polygon or not. Figure 2.10 show the

application of this method to an example map, black points are not covered, blue point are

covered from just one sensor and the red ones are covered by two. Computing if the point

is inside a polygon is a simple operation performed quickly as described in [32], in the end,

the percentage of points located inside more then one polygon, is approximately equal to

the percentage of area covered by more than one sensor.

The redundancy values are not optimized during this work, their values are still calculated

to analyze how the redundancy behaves with the coverage optimization.

Figure 2.10: MC Redundancy measurement
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2.3 Simulated Annealing Optimization

2.3.1 Introduction

Simulated Annealing (SA) is a probabilistic method for global optimization, it can give a

good approximation for a global optimum in a complex function. The name is inspired on

his heuristic that resembles with a process of heating up and slowly cooling down a material

to align and strengthen his molecular structure. On this process, as the material cools down

slowly, the atoms tend to converge for a state that minimizes the internal energy. This

method was proposed in [6] and [17], it copies the slow cooling down technique, where the

state variables, in this case, sensor network configuration ŜL, mimic the atom positions and

the cost function (F (ŜL)) mimics the structure internal energy. Cooling down slowly will

make the variables states converge to a solution where the cost function is minimal. It can

be shown [13] that this method tends to converge to the cost function global minimum as

the cooling down process is extended.

The process begins with a random state, and on each iteration SA considers a neighbor state

(Ŝ′L) near the current state (ŜL), depending on the acceptance probabilities P (ŜL, Ŝ
′
L, T ),

ŜL will move to Ŝ′L or not. This probability depends on the cost function values for each

state and on the parameter T called Temperature. This iteration repeats until some criteria

is met or some computation resource is exhausted. The best state found during the process

(Ŝ∗L) will be the optimization result. This process is described in Table 2.4.

The main requirement for probability function P (ŜL, Ŝ
′
L, T ) is that, while T is positive, it

must have positive values when F (ŜL) < F (Ŝ′L), meaning that the state can move to a

worse solution (move ”uphill”), avoiding, this way, the algorithm to become stuck in local

minimum.

As T tends to zero, P (ŜL, Ŝ
′
L, T ) must tend to zero if F (ŜL) < F (Ŝ′L) and to a positive

value if F (ŜL) > F (Ŝ′L). This means that, as the temperature drops, the algorithm prefers

to go ”downhill”, moving mainly to neighbors that are better solutions, in fact, when T = 0

the algorithm becomes greedy, and moves only ”downhill”.

Probability function can even depend on the difference F (ŜL)− F (Ŝ′L) giving preference to

small rather than big movements ”uphill”, it is often used the Boltzmann factor to compute

this probability (2.16).

P (s, s′, T ) =


∝ e

F (ŜL)−F (Ŝ′L)

T , if F (ŜL) < F (Ŝ′L) and T > 0

0, if F (ŜL) < F (Ŝ′L) and T = 0

1, if F (ŜL) > F (Ŝ′L) and T = 0

(2.16)

Coverage optimization problems are difficult, because the evaluation function, C(ŜL),

have a bad behavior, very local minima and maxima, discrete functions, has shown in Figure

2.8 for C(Ŝ1) of a simple map, and, has the number of sensors increase, complexity grows

exponentially.

An entire state space search would be impossible for multiple sensors, so a MC method like

SA is preferred, it is very often used in discrete state spaces. It is discrete and has the

capability to avoid being trapped in local minima, so it is suited to this problem. Other

methods like Genetic Algorithms, [22], have these similar characteristics but they are much
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Table 2.4: Simulated Annealing Algorithm

1. Initialize ŜL and Ŝ∗L;

2. While computation resources available and criteria not met:

(a) Compute a new neighbor state Ŝ′L;

(b) If F (Ŝ′L) < F (Ŝ∗L), Ŝ∗L ← Ŝ′L;

(c) If P (ŜL, Ŝ
′
L, T ) > random()*, ŜL ← Ŝ′L;

3. return Ŝ∗L

* random() returns a random number from 0 to 1 generated from uniform distribution.

more complex to implement. We followed the SA approach instead other MC methods

mainly due to his simplicity.

2.3.2 Temperature Schedule

SA performance depends critically on the temperature schedule, this is the way that the

parameter T changes along the optimization process, when T is high, states change widely,

as the temperature drops the search becomes more thorough. The most common approach

is decreasing by a factor α, between zero and one, in each iteration, T (k) ← αT (k − 1),

being k the iteration number.

On our optimization the temperature schedule was divided in three parts (2.17), the initial

temperature (Tini) was kept constant in the beginning to let the algorithm search almost

randomly through the entire space, then, on second part the common approach, reducing

temperature by a factor α and finally some iterations with T = 0, to refine the solution. To

perform this, we defined three parameters, kα, k0 and kend, stating the iteration to start α

decay, to put T = 0 and to stop the algorithm. Figure 2.11 shows a possible temperature

schedule layout respecting the above description.

The method to choose neighbors (Ŝ′L) was adding a random tuple to the current one, but

the norm of this tuple was different for each part. First a the algorithm performs large

variations in network configuration, allowing the solution to travel widely on state space,

then the random tuple decreases, in the end it just makes small adjustments.

T (k) =


Tini k < kα

αT (k − 1) kα < k < k0

T = 0 k0 < k < kend

(2.17)

2.3.3 Proposed Method

The objective of this optimization problem is to maximize the area covered by a network

of L sensors installed on indoor scenarios walls. The search space, or state space for this

problem is formed by all possible tuples with size L, generated from combinations of sensors
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Figure 2.11: Temperature schedule layout

configurations ̂dSSSL. This set is resemblant to ŜSS
L

but for the discrete set ̂dSSS (2.18).

(s1, ..., sL) ∈ ̂dSSSL if s1,...,L ∈ ̂dSSS (2.18)

Analyzing the search space and the cost function characteristics, SA algorithm is suitable

for this problem :

• Discrete state space, ̂dSSSL. Normally used in SA implementations.

• non-Convex cost function, the coverage area along the possible sensor configurations

has many local minima and narrow valleys, as seen in the example of Figure 2.8, SA

algorithm is suited for this problem as it can avoid being trapped in local minima.

• Wide search space, being impossible to search the entire space. SA is a MC method

which is needed to compute a solution in a reasonable time.

• Implementation simplicity, SA is one of the most simple to implement MC methods.

As this is just a first step towards the localization system itself the method simplicity

is an important criteria to choose it.

Meeting the most important criteria that we have establish, SA is the algorithm chosen to

optimize sensor networks.

To compute the network with optimal coverage using SA algorithm, the cost function is

actually a fitness function because it s maximized instead of minimized. This is not a

big challenge and is done on the algorithm implementation itself. From now on the SA is

”inverted” and tries to maximize the fitness function. This function is the coverage of the

network C(ŜL) (2.13). This function is evaluated on the search space ̂dSSSL during each

run of SA. The best solution (Ŝ∗L) is the tuple (2.20) for which the coverage function gets

the higher value (C(Ŝ∗L)). The objective of the optimization process is to find the global

maximum of this function (2.19).

C(Ŝ∗L) = maxŜL C(ŜL) (2.19)

(s1, ..., sL) = Ŝ∗L = argmaxŜL C(ŜL) (2.20)

The output of the algorithm is not always the global maximum, but for multiple runs2 of

SA, the probability of finding the global maximum rises. With more runs of the algorithm

2Executions of SA with the same state space, which increases the probability of finding the global maxi-

mum
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more certainty we have about the location of the maximum.

The tuple that gives rise to the maximum coverage contains the configurations for the sensors

on the network, placing them with those configurations guarantees the optimal coverage for

a network with L sensors.
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2.4 Experimental Results

For experimental proposes two maps were used, the first is the indoor map of a floor of

the TB in ITER shown on Figure 2.12(a) where the solid edges are walls and dashed ones

are VV doors. The second map is a general propose warehouse building on Figure 2.12(b),

synthesized to prove the effectiveness of this method in other environments, solid edges are

walls and dashed edges are shelves. Sensors can only be mounted on solid walls. Figures

2.12(a) and 2.12(b) show the path used to create the ̂dSSS set, this was done with a

discretization step of 0.2 m for translation and π/60 for rotations.

The CG for these two maps are shown in Figure 2.13(a) and 2.13(b) , this is sufficient to

notice the behavior of this functions for a network of just one single sensor, very hard to

optimize as the sensor network grows.

END

START

0m 10m 20m

(a) Tokamak map

START

END

0m 10m 20m

(b) Warehouse map

Figure 2.12: TB and WHB with path along ̂dSSS
The optimization results were obtained using temperature schedule presented in section

2.3.2, fixed the parameters (kα, k0, kend) = (.05kend, .95kend, 5000) the number of iterations

is fixed, equal to 5000. This was establish taking in consideration the trade-off between

optimization time and fitness value achieved on each run of SA. For each L, the SA algorithm

runs ten times, and the best result obtained in these runs is assumed to be the optimal (Ŝ∗L).

Figure 2.15 shows the coverage C(Ŝ∗L) and redundancy R(Ŝ∗L) depending on L, for the

network with maximum coverage. The graph also show the minimum coverage (min(C(ŜL))),

the minimum and the maximum redundancy (min(R(ŜL)) and max(R(ŜL))) obtained in

the ten SA runs., the behavior of maximum coverage as the number of sensors grow is similar

on both maps, and is typical for indoor scenarios. The incremental gain (2.21) is a good

evaluator to choose the number of sensor forming the network if the problem depends only

on the coverage.

G(L) = C(Ŝ∗L)− C(Ŝ∗L−1) (2.21)

36



Tag

C
o
v
e
r
e
d
A
r
e
a

T
o
ta

lA
r
e
a
[%

]
Translation
Rotation

100

0 450040003500300015001000500

(a) Tokamak building

Tag

C
o
v
e
r
e
d
A
r
e
a

T
o
ta

lA
r
e
a
[%

]

Translation

Rotation

0

100

250015001000500 2000

(b) Warehouse building

Figure 2.13: Coverage Graph for both maps

L - Number of Sensors

M
ea
n
T
im

e
S
p
en
t
b
y
S
A

ru
n

1 2 3 8 9 100s

50
s

10
0s

15
0s

20
0s

25
0s

30
0s

Figure 2.14: Optimization time depending on number of sensors installed

37



For scenarios where there is no tolerance for failure, redundancy of the system is very

important, although not optimized on this work. The redundancy grows with the coverage,

but since it is not optimized has more variation then the coverage along the different runs.

In some situations it is better not to choose the maximum coverage network, because there

are solutions where, losing some coverage, the network gains a lot of redundancy. For the

TB values (2.15(a)) for a network with eight sensors (L = 8), the coverage is almost the

same on all runs of SA, but the maximum coverage network has a redundancy below 60%

while there is a network with almost 90% redundancy, with nearly the same coverage, which

is a better solution considering the two criteria. Naturally, in this case the best solution

does not coincide with the maximum coverage criteria.

Detailed values for coverage and redundancy, respecting the optimal network configurations

ŜL, are given on Tables 2.5 and 2.6, including redundancy in higher levels, from D = 2 to

D = 6. Optimal coverage network configurations Ŝ∗L are shown in Figure 2.16 and 2.17, to

notice the behavior when a new sensor is added, the tendency is to stay away from the others

to maximize coverage over the entire scenario. When L is high, the network attributes a

sensors for very specific areas, where the others can not cover, and so the separation between

them is less visible.

Redundancy with D > 2 is a indicator of coverage from multiple sensors, this can have

an impact on the quality of the localization system prediction, since the system has more

observations on the vehicle when it travels through these areas.

The redundancy is not optimized on this work because it takes a long time computing, the

present values, are processed off-line, after the SA algorithm completes the coverage opti-

mization.

The polygon logic operations take some time, as L grows, the complexity rises, initially

visibility polygons are star-shaped, making the union operation very simple, but the result

from this operation is a, no longer star-shaped, polygon, it can contain holes, or even be-

come a set of disconnected polygons. So logic union operation is the critical operation in the

algorithm. Figure 2.14 shows the mean processing time, in all ten runs of SA, time values

are not very important, since they depend on the processor used, but still, they yield that

the operation complexity depends linearly on the number of sensors L.
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C(Ŝ∗

L) — Coverage for Optimal network

min(C(ŜL)) — Minimum Coverage obtained

R(Ŝ∗
L) — Redundancy for Optimal network

min(R(ŜL)) — minimum Redundancy obtained

max(R(ŜL)) — maximum Redundancy obtained

(c) Legend

Figure 2.15: Coverage and Redundancy depending on number of sensors installed
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Table 2.5: C(ŜL) and RD(ŜL) for Tokamak Building

C(ŜL)
RD(ŜL)

L D = 2 D = 3 D = 4 D = 5 D = 6

1 41.4%

2 78.4% 0%

3 91.7% 12% 0%

4 97.1% 20% 0% 0%

5 99.2% 36% 1% 0% 0%

6 99.3% 53% 5% 0% 0% 0%

7 99.9% 58% 11% 0% 0% 0%

8 100.0% 56% 16% 2% 0% 0%

9 100.0% 74% 31% 8% 0% 0%

10 100.0% 72% 38% 7% 0% 0%

Table 2.6: C(ŜL) and RD(ŜL) for Warehouse Building

C(ŜL)
RD(ŜL)

L D = 2 D = 3 D = 4 D = 5 D = 6

1 37.6%

2 65.3% 5%

3 82.1% 14% 0%

4 91.6% 19% 1% 0%

5 98.4% 37% 9% 0% 0%

6 100.0% 38% 5% 0% 0% 0%

7 100.0% 46% 13% 4% 1% 0%

8 100.0% 57% 36% 17% 0% 0%

9 100.0% 76% 30% 4% 0% 0%

10 100.0% 70% 39% 16% 7% 2%
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(a) C(Ŝ1) = 41% (b) C(Ŝ2) = 78% (c) C(Ŝ3) = 92%

(d) C(Ŝ4) = 97% (e) C(Ŝ5) = 99% (f) C(Ŝ6) = 99%

Figure 2.16: Solutions for Tokamak building, 1 < L < 6

(a) C(Ŝ1) = 38% (b) C(Ŝ2) = 65% (c) C(Ŝ3) = 82%

(d) C(Ŝ4) = 92% (e) C(Ŝ5) = 98% (f) C(Ŝ6) = 100%

Figure 2.17: Solutions for Warehouse building, 1 < L < 6
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How many sensor should be mounted in a scenario to ensure a good performance for the

localization system, and where to put those sensors are the main questions to answer on this

chapter.

• How many sensors, taking only the coverage in consideration, a possible rule to

decide L is defined in 2.22, using the incremental gain (2.21). If these gain drops

below a certain threshold (ξ) means that there is no gain in adding more sensors. In

a practical situation more criteria could be considered, as the redundancy or areas of

interest, some areas could be uncovered but there is no way for the vehicle to reach

them, so there is no interest on them. The redundancy has an important role on

the robustness of the system and in some situations it is profitable to give up on some

coverage to gain redundancy as explain for the TB example in Figure 2.15(a) for L = 8.

L = min n : G(n) < ξ (2.22)

• Where to put the sensors, with L fixed and considering only the coverage, the

optimized network Ŝ∗L is the best way to distribute the sensors on the scenario. If we

choose a non-optimal solution, for example, to enhance the redundancy, the sensor

placement must always respect the configurations on the tuple ŜL.

The actual placement on the real scenario can generate deviations from the predefined

positions. This deviations can affect the performance of the localization system adding

static errors.

An expeditious method to avoid these errors is a process of automatic calibration after

the mounting process. These method is not yet implemented and is left as an open

issue to address in future work.
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Chapter 3

Vehicle Localization

3.1 Problem Statement

The localization problem is well known in robotics. In order to plan or follow a trajectory,

to reach a certain goal, the knowledge of the correct position of the vehicle is crucial. Either

by remote control handling with human operators or by autonomous guiding systems, this

is a crucial part during remote handling operations in ITER buildings.

The requirement in a known environments is to localize the vehicle given the map layout.

Usually this is made using on board sensors, with methods like EKF Localization or Monte

Carlo Localization (MCL) ([14]). In this work, the main difference is the installation of

sensors in the scenario instead, leaving the vehicle just as an actuator. On this approach,

the environment observes the vehicle and not the other way around.

This specification brings new challenges, in common methods, with the vehicle movement,

all measures are expected to change, since they are observations of the environment. In this

application some change and others stay the same because some observe the vehicle and

others do not. There is no trivial way to decide if all measures are interesting or just the

ones hitting the vehicle, and no trivial way to classify them as hitting or not hitting the

vehicle. The main goal is the creation of a localizations system that, overcoming this issues,

integrates the sensor measurements and estimate the vehicle pose correctly with a certain ac-

curacy. The vehicle pose (3.1) tells the position of vehicles’ center and respective orientation.

xt =
[
xtr ytr θtr

]T
(3.1)

x̂t =
[
x̂tr ŷtr θ̂tr

]T
(3.2)

Localization problem consists on estimating the correct pose, returned by the vector x̂t (3.2),

knowing the surrounding environment. This includes the map layout, the vehicle layout and

the correct sensors positions. Map layout representation is equal to the one described in

Chapter 2 on section 2.1.

Vehicle layout is described by a polygon V0 defining the corner positions in CCW when the

vehicle pose is xt = [0 0 0] (3.3) on Figure 3.1(a). V (xt) (3.4) on Figure 3.1(b) is the vehicle
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in pose xt = [xtr, y
t
r, θ

t
r]
T

.

V0 =

[
x1 x2 · · · xP

y1 y2 · · · yP

]
(3.3)

V (xt) = [p1 p2 · · · pP ] =

[
cos θtr − sin θtr

sin θtr cos θtr

]
V0 +

[
xtr xtr · · ·
ytr ytr · · ·

]
(3.4)

(x1, y1) (x2, y2)

(x3, y3)

(x4, y4)

(x5, y5)(x6, y6)

(x7, y7)

(xP , yP )

~0

(a) On origin

p1

p2

p3

p4p5

p6

p7

pP

(xtr, y
t
r)

θtr

(b) After transformation

Figure 3.1: Vehicle layout

Sensor measurements come from a network of LRF sensors [16], each one with specific

configurations (si) (3.5). xis, y
i
s and θis are the pose of the i-th sensor, Φis is the FoV, δis the

angular resolution and σis the standard deviation for distance measurement errors. Some of

these parameters are imported from the optimization problem of Chapter 2, only δis and σis

are established here depending on equipment installed.

The integration of several sensors is mandatory to cover all possible vehicle positions, the

sensor network is defined in S (3.6) containing L sensors.

si =
[
xis yis θis Φis δis σis

]T
=
[

[T (ŝi)]
T δis σis

]T
(3.5)

S = [s1 s2 . . . sL] =


x1
s y1

s θ1
s Φ1

s δ1
s σ1

s

...
...

...
...

...
...

xLs yLs θLs ΦLs δLs σLs


T

(3.6)

LRF sensors measure distances to obstacles around them, for each angular position there

is a distance. Measurements acquired from each sensor si are arranged in the array z(si)

(3.7) where dij is a distance corresponding to laser beam with direction ϕij acquired by the

i-th sensor in scenario. The number of measurements for each sensor depends on his FoV

and angular resolution. These can be converted into spacial points in Cartesian coordinates

using the tranformation described in 3.8. The measurements available from all network

come from all the L sensors installed in the scenario (3.9).

z(si) =

[
di1 · · · diPi
ϕi1 · · · ϕiPi

]T
(3.7)

zcart(si)j =

[
dij cosϕij + xis

dij sinϕij + yis

]T
, zcart(si) =


zcart(si)1

...

zcart(si)Pi

 , Pi =

⌊
Φis
δis

⌋
+ 1

(3.8)
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Z =
[
z(s1) · · · z(sL)

]
(3.9)

Measurements coming from LRF are corrupted with noise (Figure 3.3), mainly in the range

measured, the error in angular position is very small and neglected in this work. The error

in ranges can be modeled as corrupted with zero mean gaussian noise as shown in [40], for

a widely used commercial sensor. The variance for this noise is described for each sensor by

his standard deviation, σis.

Based on these problem framework, two Baysian methods of estimation are tested, EKF and

PF [34], to choose which is better suited to the task. They will integrate sensor measurements

with dynamic information, like velocity commands, to achieve an estimation with a certain

accuracy.

(xtr, y
t
r, θ

t
r)

(x2s, y
2
s , θ

2
s)

(x1s, y
1
s , θ

1
s)

Φ1
s

zcart(s1)1
zcart(s1)2
zcart(s1)3
zcart(s1)4

d21d22

ϕ2
1 ϕ2

2

δ2s

Figure 3.2: Vehicle localization framework

Figure 3.3: Measurement noise
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3.2 Extended Kalman Filter

3.2.1 Introduction

Kalman filter (KF) is a very useful tool in robotics field, it is used in data fusion and

sensor fusion, his typical application are the estimation of state variables based on noisy

measurements. It has popularity in localization, tracking in computer vision etc.

It is a discrete-time filter having two major steps per iteration, prediction and update. For

each time step t, KF has a belief over the state xt, this belief is computed based on all

previous information, measurements (zt) and control inputs (ut). On prediction step, KF

estimates a prior belief (3.11), based on previous belief (3.10), control inputs and transition

model (called movement model later on). The update step uses the sensor observations

and, from baysian inference rule, computes a posteriori belief (3.12) using an observation

model, updating the the prior belief. KF is a gaussian process, so all beliefs, at time t, are

represented by mean µt and covariance Σt.

bel(xt−1) = p(xt−1|z1:t−1, u1:t−1) ∼ N (µt−1,Σt−1) (3.10)

bel(xt) = p(xt|z1:t−1, u1:t) ∼ N (µt,Σt) (3.11)

bel(xt) = p(xt|z1:t, u1:t) = ηp(zt|xt)p(xt|z1:t−1, u1:t) ∼ N (µt,Σt) (3.12)

KF is a dynamic filter using predefined linear models, a state transition model (3.13) and an

observation model (3.14). At is the state transition matrix, Bt is the control-input matrix

and Ct is the observation model’s matrix. Zero mean gaussian noise is added to linear mod-

els each iteration, Qt and Rt are the process and the observation noise covariance matrices,

respectively.

xt = Atxt−1 +Btut + wt, wt ∼ N (0, Qt) (3.13)

zt = Ctxt + vt, vt ∼ N (0, Rt) (3.14)

Using this framework, equations 3.15 and 3.16 form the prediction step, yielding a prior

belief (µt, Σt), an optimal Kalman gain (Kt) is computed (3.17)taking in consideration the

certainty of measurements and ambiguity in current predicted estimation. This gain is useful

to the update step, after measurement acquisition both mean and covariance are updated

(3.18 and 3.19) making the posteriori belief (µt, Σt).

µ̄t = Atµt−1 +Btut (3.15)

Σ̄t = AtΣt−1A
T
t +Qt (3.16)

Kt = Σ̄tC
T
t (CtΣ̄tC

T
t +Rt)

−1 (3.17)

µt = µ̄t +Kt(zt − Ctµ̄t) (3.18)

Σt = (I −KtCt)Σ̄t (3.19)

Under certain initial conditions and respecting the gaussian and linear assumptions, KF

tends to minimize the mean-squared error between predicted and real states [28].
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The main problem with KF is the limitation to linear systems, in real world this have very

limited applications.

EKF is an improvement from simple KF, through a linearization via Taylor expansion

about the current mean and covariance, EKF supports non-linear systems using the same

filter framework. In this case the transition (3.20) and observation (3.21) models have no

need to be linear, instead, they must be differentiable.

xt = f(xt−1, ut) + wt, wt ∼ N (0, Qt) (3.20)

zt = h(xt) + vt, vt ∼ N (0, Rt) (3.21)

During filter operation, the steps are identical to KF, the EKF algorithm is synthesized on

Table 3.1 .To keep the same mathematical treatment, a linearization of model functions is

needed. The first order Taylor expansion is the linearization method applied, Ft and Ht

(3.22) are the jacobians, around the current prediction state, of transition and observation

model, respectively.

Table 3.1: EKF algorithm

1. Initialize with current belief at time t = 0, (µ0,Σ0)

2. For each time step t, t = t+ 1, new commands ut and measurements zt

(a) Prediction step:

µ̄t = f(µt−1, ut)

Σ̄t = FtΣt−1F
T
t +Qt

(b) Compute Kalman gain:

Kt = Σ̄tH
T
t (HtΣ̄tH

T
t +Rt)

−1

(c) Update step:

µt = µ̄t +Kt(zt − h(µ̄t))

Σt = (I −KtHt)Σ̄t

Ft =
∂f

∂x

∣∣∣∣
µt−1,ut

Ht =
∂h

∂x

∣∣∣∣
µ̄t

(3.22)

In this case the filter’s estimation corresponds to vehicle’s pose, µt = [x̂tr ŷtr θ̂tr]
T which

is estimated state, at time t. Although by linearization, the EKF overcomes the greater

limitation of KF, the linear models, it has some problems with non-smooth function, but it

works well in many cases ([19], [30]). For this research, with laser range finder sensors it was

interesting to test the behavior of EKF, by his simple implementation and great adaptability

to many problems.

3.2.2 Proposed Method

The method proposed is a direct implementation of EKF, where µt is the filter estimation

of vehicle pose, x̂t = µt, the prediction step is based on the movement model computing a
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prior belief of vehicle pose, x̄t, using previous estimate and control inputs, ut. The update

step is based on observation model, it integrates the sensor’s measurements to update the

prior belief and estimate xt with minimal error.

Movement model

The movement model f(x̂t−1, ut) predicts the pose of the vehicle in the current time step,

using the previous pose and the input-control commands. In this case the movement model is

non-linear and depends on vehicle kinematics. From vehicle kinematics and current pose pre-

diction is possible to extract a velocity vector for the center of the vehicle, gt =
[
vtx, v

t
y, v

t
θ

]T
.

To compute the priori belief, is necessary a discrete integration of this velocities (3.43), with

time steps corresponding to algorithm time step ∆T .

x̄t = x̂t−1 + ∆T gt + wt, wt ∼ N (0, Qt) Qt =


σ2
x 0 0

0 σ2
y 0

0 0 σ2
θ

 (3.23)

Where Qt is the covariance matrix for the process noise, associated with movement errors,

assuming source of noise independent for each movement component.

On the current application the vehicle is the TCS, his driving system is composed by

two wheels that can have different directions and rotation velocities. The actual control

commands given to the robot’s controllers are the velocities and headings for these two

wheels as shown in Figure 3.4 ut = [vtF , v
t
R, α

t
F , α

t
R]
T

. The linearization around the current

prediction x̄t is described in (3.24). These are specific kinematics for the TCS vehicle but

the method is suited for any kind of vehicle.

gt =


vtx

vty

vtθ

 =


vtR cos(θ̂tr + αtR) + vtF cos(θ̂tr + αtF )

vtR sin(θ̂tr + αtR) + vtF sin(θ̂tr + αtF )
1
bW [−vtR sin(αtR) + vtF sin(αtF )]

 (3.24)

vtF and vtR are the velocities for front and rear wheels, αtF and αtR are the respective headings

with reference to robot orientation θtr, x̂t is the current prediction and bW is the distance

between wheels’ center.

αtR

αtF

vF

vR

vx

vy

vθ

θtr

bW

Figure 3.4: TCS vehicle kinematics
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Observation model

The observation model h(x̄t) is a non-linear function that predicts measurements based

on a estimation of vehicle pose x̄t. This observation model predicts, for each sensor, the

distances measured by a laser ray casted in predefined angular position ϕij . These angles

are predefined by the sensor orientation θis, angular resolution δis and FoV Φis.

s1

s2

x̄t

∈ χ(x̄t, s2)

∈ χ(x̄t, s2)

∈ χ(x̄t, s1)

∈ χ(x̄t, s1)

(a) χ(xt, si) and χ(xt, si) sets example

x̄t

(b) Measurement distance prediction

Figure 3.5: EKF observation model

A ray is casted in each direction ϕij , all the possible intersections with vehicle’s edges

are considered in 3.25, where pk is a point from the vehicle layout V (xt). A laser ray only

hits the vehicle if 0 < ce < 1 and le > 0, being e the index of the vehicle edge. There are

always more than one intersection with the vehicle (Figure 3.5(b)), the correct range, d̄ij ,

corresponds to the intersection with minimal le because, first edge occludes the ones behind.

The index of the edge facing the ray is denoted ê.

Since the laser measurements hitting the map walls are not dynamic with the vehicle pose,

there is no need for an observation model for them, so for each sensor, the model prediction,

hi(x̄t) (3.26), is an array of distances, d̄ij , one for each direction, ϕij , that hits the vehicle.

The length of this array, J = #χ(x̄t, si), corresponds to the number of laser rays hitting the

vehicle, and depends on si and x̄t.

χ(x̄t, si) is a set of angular positions, such that laser rays casted in those directions, from

sensor si, hit the vehicle with pose x̄t. χ(x̄t, si) is the set of angular positions which rays do

not hit the vehicle. Figure 3.5(a) shows the parameters and variables used in observation

model, for a general vehicle layout V (x̄t) (3.4). Combining all sensor predictions, h(x̄t) is

an array with prediction of Z but only for measures that hit the vehicle.

A(ϕij , pk) =

[
cosϕij xk − xk−1

sinϕij yk − yk−1

]
, pk =

(
xk

yk

)


l1

c1
...

lP−1

cP−1


=


A(ϕij , p2) 0 0

0
. . . 0

0 0 A(ϕij , pP )


−1


p2 −

(
xis

yis

)
...

pP −
(
xis

yis

)


d̄ij = lê = min

{
l1 · · · lP−1

}
le > 0, 0 < ce < 1

(3.25)
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hi(xt) =

[
d̄i1 · · · d̄iJi
ϕi1 · · · ϕiJi

]
(3.26)

h(xt) =
[
h1(xt) · · · hL(xt)

]
(3.27)

The problem with these approach is that, at time t, the EKF does not know the true

pose of the vehicle, xt, it knows the ápriori estimation, given by the movement model, x̄t.

This will have some impact in the observation model, since in reality, the laser rays hitting

the robot are not the same as the ones hitting in estimation.

There are four distinct sets of measurements, the ones hitting the robot in real pose and

in estimated pose, χ(xt, si) and χ(x̄t, si), and the ones hitting map walls or fixed obstacles

in real and estimated pose, χ(xt, si) and χ(x̄t, si), respectively. Figure 3.6 presents an ex-

ample where the estimation is not far from real pose, but the sets does not coincide. This

x̄t
si

xt

(a) Ranges for pose xt

x̄t
si

xt

(b) Ranges for pose x̄t

Figure 3.6: Measurement model non-gaussian, non-smooth behavior

situation represents a non-gaussian and non-smooth behavior of the measurement model,

since for small differences in vehicle pose there are wide changes in some measurements.

EKF assumes always gaussian error on measurements and also computes the kalman gain

matrix using a linearization of the observation model around the estimated point, assuming

smooth behavior of the model. For this particular measurements, on the vehicle limits, these

assumptions don’t apply. The observation model function is not globally differentiable, in

this cases it has no derivative, being this a problem for this method.

The solution proposed is to ensure that the observation model function stays in his differen-

tiability domain, which means, in this case, that the filter only counts with measurements

such that ϕij ∈ [χ(xt, si) ∩ χ(x̄t, si)], this approach eliminates useful information from the

filter, since it is neglecting some measurements.

For these implementation the sets χ(xt, si) and χ(x̄t, si) must be computed on each EKF

update step. χ(x̄t, si) is easy to achieve, since x̄t is well known, but for the real pose, it

is not so trivial, there is no absolute certain way to distinguish the measurements hitting

the vehicle and the ones hitting the map. One way to guarantee the knowledge of this set

with a certain degree of confidence is by implementing a virtual barrier around the map

wall, and classify the measurements depending if the point measured is inside or outside the

barrier polygon(3.28). Figure 3.7 illustrates this classification. The thickness of this barrier

depends on the standard deviation for the error of laser range measurements σis, and on
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the certainty degree of the barrier itself. As the range measurement error is assumed to be

gaussian a barrier with thickness of 3σis will ensure that 99% of measurements would be

classified correctly.

The objective with this sets is to minimize the impact of non-smoothness of observation

model, including only measurements hitting both predicted and real vehicle body. The

problem is not yet solved but it is minimized.{
if zcart(si)j inside barrier polygon, ϕij ∈ χ(xt, si)

if zcart(si)j outside barrier polygon, ϕij ∈ χ(xt, si)
(3.28)

s1

s2

xt

Figure 3.7: Barrier around map walls

To compute the crucial EKF update step, the kalman gain matrix Kt requires a lin-

earization of the observation model function, the simplest way is using the jacobian Ht

(3.29) around the current prediction, x̄t. Jacobian is, for each laser ray, the derivative of

the distance measured with respect to vehicle pose (3.30). The derivative for each measure-

ment such that ϕij ∈ [χ(xt, si) ∩ χ(x̄t, si)], depend on vehicle pose, x̄t, sensor pose, si and

direction, ϕij .

Although the measures include both range and angle, the jacobian only has derivatives on

measured ranges because the angle is static, and gaussian error is only considered on range

measurement and not on angular distances .

Ht =
[

∂h(xt)
∂xtr

∂h(xt)
∂ytr

∂h(xt)
∂θtr

]T ∣∣∣∣
xt

(3.29)

Ht(ϕ
i
j) =

d

dxt
[1 0]

[
A(ϕij , pê+1)−1

[
pê+1 −

(
xis

yis

)] ]∣∣∣∣∣
xt

(3.30)

The implementation presented maps directly the influence of measures on the vehicle

pose, there is not the intermediate step of feature extraction, like line extraction ([38], [25],

[18]) or matching of the vehicle layout to measurements ([35]), since these approaches require

some computational effort, and normally perform poorly when facing symmetry, which is

typical in vehicle layouts.

The output of this filter should be a good approximation of the correct vehicle pose,xt,

returning for each time step t, a estimation x̂t = [x̂tr ŷtr θ̂tr]
T and a covariance matrix,

Σt representing the current belief. These matrix is a good indicator of the precision of the
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method. Typically if variances are high, the filter has poor precision, if they are low means

more precision.

3.2.3 Fault Detection, Global Localization and Pose Ambiguity

The only way to detect that prediction is wrong, going away from the real pose, is by

measurement analyzes. Those are the only information available on-line. The number of

measurements integrated by KF is a good evaluator of the similarity between sensor real

and estimated poses.

To reach a numerical value for this similarity, it is defined a similarity ratio, sml, in 3.31,

where # defines the number of elements of the set, i.e., #χ(xt, si), define the number of

laser rays falling outside the barrier. sml is a number between 0 and 1, being 0 for total dis-

similarity and 1 for complete similar. Figures 3.8(a) and 3.8(b) illustrates the principle, the

idea is to have an on-line certainty evaluator, this way the method can implement heuristics

to enhance his performance, like enlarging the covariance matrix, or restart the method with

a new initial belief.

sml =
2# [χ(xt, si) ∩ χ(x̄t, si)]

#χ(xt, si) + #χ(x̄t, si)
(3.31)

cm =
1

#χ(xt, si)

∑
[zcart(si)j ]

T
, for ϕij ∈ χ(xt, si) (3.32)

One possible use for this feature is the global localization, on a kidnapping situation, in

this case this is equivalent to a situation where the system fails and loses track of the

vehicle. With these method the algorithm perceives the vehicle loss and generates a new

belief centered in the most probable position for the vehicle.

The most probable position is where the sensors are known to be hitting something rather

than the wall. Using the barrier described in section 3.2.2, a position cm = [cmx cmy]T is

computed based on the measures which angular positions ϕjj ∈ χ(xt, si) (3.32). The filter

is restarted, with x̂ position equal tocm with a random orientation, and with a predefined,

sufficiently large, covariance matrix, that should be defined considering vehicle’s dimensions.

The point cm has a high probability to fall inside the vehicle layout, (Figure 3.8(c)), and so,

if the covariance ellipse include the vehicle center, the method has big chances to converge

based on the observation models only.

During EKF operation, with certain kind of vehicle layout, there is a possibility of pose

ambiguity, due to symmetries. For example with a rectangular vehicle, like TCS, there is a

180◦ ambiguity, the only way to distinguish which is the front and rear of the vehicle is by

dynamics integrations. This is a hard problem, because the error given by the dynamics in

each iteration is absorbed by the noise random variable, wt.

EKF belief is modeled with a gaussian, there is no way to have multi-modal distributions.

Once the algorithm locks with one orientation it is stuck with it, since the movement model

noise absorb the error caused by dynamics, and from the sensors point of view, due to

symmetry, the measurements are correct.

This problem was not solved in the EKF framework, but in section 3.3.3 some heuristics are

proposed to solve it.
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Figure 3.8: Global localization with EKF

3.3 Particle Filter

3.3.1 Introduction

PF is, like EKF, a bayesian state estimation method, proposed, the first time, in [12].

This method is comparable with EKF, since it is a discrete-time estimator, it work re-

cursively and has the same two steps, prediction and update. The major difference is in

belief representation. Beliefs, at time t, are no longer represented by gaussian moments, but

instead, with a set of weighted particles Ψt (3.33), each one is a hypothetical realization,

x
[n]
t = [x

[n]
r y

[n]
r θ

[n]
r ]T of the state to estimate, xt. These way there is no assumption of

gaussian processes, and both transition and observation models can be non-linear and non-

gaussian.

The prior belief is represented, at time t, by the set Ψt (3.35) it is composed by Np particles.

The method computes belief bel(xt) recursively from bel(xt−1), so for the representation

with particle sets, the method estimates Ψt from Ψt−1.

For each iteration, the prediction step is done using a transition model, this model maps

the effect of control inputs on each particle state x
[n]
t−1. From previous belief Ψt−1 (3.34)

and control inputs (ut), it generates the prior belief particle set Ψt. During update step,

the algorithm uses measurement model and computes the weights of each particle, w
[n]
t .

This weight (3.37) is the likelihood of measurements predicted for state x
[n]
t given the real

measurements zt. This weighted set of particles, Ψt represent the posterior belief (3.36 since
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by bayesian inference and markov assumption the posterior belief is related to prior belief

by 3.38 . Intuitively it is expected that the particles with greater likelihood are the ones

closer to correct state.

Ψt =
{
x

[1]
t , x

[2]
t , · · · , x

[Np]
t

}
(3.33)

bel(xt−1) = p(xt−1|z1:t−1, u1:t−1) ∼ Ψt−1 (3.34)

bel(xt) = p(xt|z1:t−1, u1:t) ∼ Ψt (3.35)

bel(xt) = p(xt|z1:t, u1:t) ∼ Ψt (3.36)

w
[n]
t = p(zt|x[n]

t ) (3.37)

bel(xt) = ηp(zt|xt)bel(xt) = ηp(zt|xt)p(xt|zt−1, ut) (3.38)

The algorithm used by PF is described in Table 3.2, the resample step is the main intro-

duction with respect to EKF, this step samples a new set Ψt from the set Ψt, it maps the

particle weights into their spacial distribution. It is like sampling particles from bel(xt) 3.38,

the weights are reseted, and a new iteration begins from the last spacial distribution. Re-

sampling forces particles’ states to be close to the real one, otherwise, particles would start

to go away from real state. The weights should accumulate along the various iterations 3.39,

and the majority of particles would have very low weights, without resampling the method

need much more particles and normally performs poorly.

w
[n]
t = p(zt|x[n]

t )w
[n]
t−1 (3.39)

Table 3.2: PF algorithm

1. Initialize with current belief at time t = 0, Ψ0

2. For each time step t, t = t+ 1, new commands ut and measurements zt

(a) Prediction step, for each particle n:

Sample x
[n]
t ∼ p(xt|zt−1, ut)

(b) Update step, for each particle n:

Weight attribution w
[n]
t ∝ p(zt|x[n]

t )

(c) Normalize weight distribution:
∑Np
i=1 w

[n]
t = 1

(d) Resample: Sample x
[n]
t ∼ ηp(zt|xt)p(xt|zt−1, ut), forming Ψt

An application of PF to vehicle localization, is the MCL method, ([9], [15] ). In MCL

algorithm the prediction step depends on a transition model, f(xt, ut) that, for each particle

state, x
[n]
t−1 will compute his new state based in commands, ut, (3.40), since it is applied to

a mobile vehicle, in this situation, it is also called movement model. In this context, the

states predicted for particles representing the prior belief Ψt, are addressed as x̄
[n]
t , being

Ψt =
{
x̄

[1]
t , x̄

[2]
t , · · · , x̄

[Np]
t

}
.

The update step uses a sensor model, or observation model, to compute the measurement
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likelihood p(zt|x[n]
t ). This observation model h(xt) (3.41) is used to attribute the weights

for each particle.

x̄
[n]
t = f(x

[n]
t−1, ut) (3.40)

w
[n]
t = h(x̄

[n]
t ) (3.41)

The resample step is done in a particular way, it uses the current particle states, drawing no

new states. This method, in fact, clones several times the same particle to the next distri-

bution. The probability of drawing a particle in the next distribution is proportional to his

weight. This can be done because in next prediction step, the error added to movement pre-

diction has an independent random value, so it will separate particles states, keeping them

in the same space region. This method has no gaussian assumptions or linearizations, this

can be an advantage since EKF had some problems with non-smoothness and non-linearity

of the observation model function. MCL algorithm is described in Table 3.3.

Table 3.3: MCL algorithm

1. Initialize with current belief at time t = 0, Ψ0

2. For each time step t, t = t+ 1, new commands ut and measurements zt

(a) Prediction step, for each particle n:

x̄
[n]
t = f(x

[n]
t−1, ut)

(b) Update step, for each particle n:

w
[n]
t = h(x̄

[n]
t )

(c) Normalize weight distribution:
∑Np
i=1 w

[n]
t = 1

(d) Resample: Draw particle n with probability w
[n]
t

3.3.2 Proposed method

Movement model

The movement model f(xt, ut) is very similar to the one described in 3.2.2 in page 48 and

some parameters used here are defined there. The main differences is that now it must

be computed for each particle separately and the noise, associated to the process, must be

added on the prediction.

The model makes a discrete integration of the center velocities, derived from the vehicle

kinematic model. Now the center velocity is different for each particle, g
[n]
t (3.42), since it

depends on the heading of the prediction. Process noise is modeled by a zero mean gaussian

with covariance matrix Qt. Let us define a random vector err
[n]
t drawn from N (0, Qt) for

each particle n, at time t.

g
[n]
t =


vtx

vty

vtθ

 =


vtR cos(θ

t [n]
r + αtR) + vtF cos(θ

t [n]
r + αtF )

vtR sin(θ
t [n]
r + αtR) + vtF sin(θ

t [n]
r + αtF )

1
bW [−vtR sin(αtR) + vtF sin(αtF )]

 (3.42)
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x̄
[n]
t = x

[n]
t−1 + ∆T g

[n]
t + err

[n]
t , Qt =


σ2
x 0 0

0 σ2
y 0

0 0 σ2
θ

 (3.43)

This approach moves each particle state, respecting input ut, with independent random

error. This is useful to keep a good particle distribution in the prior belief and to separate

cloned particle from last iteration. In resample step some particle states are cloned, and the

addition of independent error, makes each particle state unique.

The error is assumed to be gaussian on the vehicle pose to estimate, xt, this assumption

can have some impact on the the method’s performance, since the errors are actually in the

wheels heading and velocities. During this work there is not a carefully inspection of the

movement error characteristics for this kinematic configuration, it might help the model for

a real world implementation, but, for now, the error in vehicle pose is assumed to absorb all

the possible errors in movement.

Observation model

PF uses the observation model to attribute weights for each particle, observation model is

a likelihood function, h(x̄
[n]
t ) = p(zt|x̄[n]

t ), it evaluates, for each particle, the resemblance

between measurement coming from sensors, and predicted for particle.

The measurements coming from real sensors Z are described in section 3.1 in page 43, the

predictions for these measurements are computed individually for each particle. Using a

similar method to the one described in 3.25, the main difference is that, now there is no

restriction on the model, and the method predicts all possible measurements, ϕij ∈ χ()∪χ(),

the predicted range is given by d̄
i [n]
j for every angular position, ϕij , making yi(x

[n]
t ) (3.44)

the same length as z(si) (3.7).

Intuitively the yi(x
[n]
t ) is the sensor, si, observation if the vehicle was in pose x

[n]
t , comparing

yi(x
[n]
t ) with zi(xt) for all sensors, will give a good evaluator if particle n state is close to the

true state. The closer the state is, the higher the measurements’ likelihood and the higher

is the particle weight w
[n]
t .

yi(x̄
[n]
t ) =

[
d̄
i [n]
1 · · · d̄

i [n]
Pi

ϕi1 · · · ϕiPi

]
(3.44)

w
i [n]
j = p(dij |x̄[n]

t ) =
1√

2πσ2
range

e

−(dij−d̄
i [n]
j

)2

2σ2
range (3.45)

Laser range finder sensors have a gaussian error on ranges measured, so a way to compute

the likelihood of a measurement prediction (w
i [n]
j ) is a 1D gaussian, with variance σ2

range

and mean d̄
i [n]
j . The likelihood of this measurement is given by 3.45

The weight of a particle (w
[n]
t ), is proportional to the likelihood p(Z|x̄[n]

t ), the sum of all

particle weights must be normalized to sum one (3.47), this way, the set of weights are a

discrete probability distribution. To obtain this distribution, each measurement is assumed

to be an independent random variable, so the joint probability is given by 3.46. Figure
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3.9 shows the appliance of this method, retrieving weights for several measures hitting the

vehicle, for map walls, the procedure is the same.

w
[n]
t = p(Z|x̄[n]

t ) = η

L∏
i=1

Pi∏
j=1

p(dij |x̄[n]
t ) (3.46)

w
[n]
t =

w
[n]
t∑Np

n=1 w
[n]
t

(3.47)

x̄
[n]
t

d i
1

di
2

di
3

d̂ i
[n
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2
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Figure 3.9: Gaussian likelihood function appliance

This approach to compute the likelihood has some problems, since the observation con-

cept is different from a normal situation. Normally sensor is on board, and measurements

change smoothly with the vehicle movement. On this approach, there are observations of

the vehicle and observations of the map on the same reading, which has a non-smooth be-

havior. For a very small change of vehicle pose, measurements can have abrupt changes, as

illustrated in Figure 3.6, where a small difference between xt and x̄t, have a major impact

on some ranges. The use of gaussian function (3.45),will result in a very low likelihood for

these measurements and consequently, since we use 3.46 to estimate the particle weight, a

very low weight to the respective particle. This situation is similar to have many particles

around the correct pose, but their likelihood is very low, obviously the simple gaussian func-

tion is not suited for this situation, or else very few particles would have a sufficient weight

to survive the resample step, making the PF perform very poorly.

The idea to overcome this problem is the use of a new likelihood function, instead of a

gaussian centered in predicted range. This function will have in account this discontinuity

and will smooth it. To implement it, classifying the measurement type is crucial.

Returning the previous set notation from Kalman filter implementation, χ(xt, si) is a set

of angular positions, such that laser rays casted in those directions, from sensor si, hit the

vehicle with pose xt. χ(xt, si) is the set of angular positions such that rays do not hit the

vehicle. Applied to PF, there are several of these sets, for each particle predicted state

(χ(x̄
[n]
t , si) and χ(x̄

[n]
t , si), and for real pose (χ(xt, si) and χ(xt, si)). Section 3.2.2 explains

how to obtain these sets,for predicted particle poses, the same approach used with kalman

predicted pose. There is no need for compute the sets χ(xt, si) and χ(xt, si), this effort is

avoided by introducing the new likelihood function.
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The likelihood function for each ray (3.48) is a weighted sum of several likelihood func-

tions and it depends on which set the ray’s angular position belongs to.

• ϕij ∈ χ(x̄
[n]
t , si): In the predicted state, x̄

[n]
t , the measurements with these angular

positions hit the vehicle. But in real state, xt, those same rays can hit or miss it, since

the correct pose is unknown:

– L1(dij) −→ ϕij ∈ χ(x̄
[n]
t , si) ∩ χ(xt, si):for this angular position ϕij the ray hits

the vehicle in predicted and in reality. It is implemented a gaussian likelihood

function like the one before, 3.45 with σ2
range variance and mean d̄

i [n]
j ;

– L2(dij) −→ ϕij ∈ χ(x̄
[n]
t , si)\χ(xt, si): for this angular position ϕij the ray hits the

vehicle in predicted pose but in reality hits the wall behind it. Since the sensor is

fixed, the range to the wall behind is a constant, Di
j , we can use this information

and implement a gaussian likelihood function, 3.45 with σ2
range variance and mean

Di
j , this accounts for a certain probability that some measures miss the vehicle

and hit the wall.

• ϕij ∈ χ(x̄
[n]
t , si): In the predicted state, x̄

[n]
t , the measurements with these angular

positions hit the map walls:

– L3(dij) −→ ϕij ∈ χ(xt, si)\χ(x̄
[n]
t , si), for this angular position ϕij the ray hits a

map wall in predicted pose but in reality hits the vehicle. This case is similar to

ϕij ∈ χ(x̄
[n]
t , si)\χ(xt, si), but here the distance to vehicle is unknown. We just

know that there is a probability for the ray to be blocked between the sensor

and the wall. This is modeled by a uniform distribution between range=0 and

range=Di
j ;

– L4(dij) −→ ϕij ∈ χ(x̄
[n]
t , si) ∩ χ(xt, si), for this angular position ϕij the ray hits

a map wall in predicted pose and reality. This is modeled with a gaussian with

σ2
range variance and mean Di

j .

• L5(dij) −→ for all rays there is a probability of erroneous measurements, problems

with sensor hardware or communication, to account for this it can be added a uniform

distribution from range=0 to maximum range.

L1(dij) = 1√
2πσ2

range

e

−(dij−d̄
i [n]
j

)2

2σ2
range L2(dij) = 1√

2πσ2
range

e

−(dij−D
i [n]
j

)2

2σ2
range

L3(dij) = 1
Dij

L4(dij) = 1√
2πσ2

range

e

−(dij−D
i [n]
j

)2

2σ2
range L5(dij) = 1

max range

w
i [n]
j = p(dij |x̄

[n]
t ) =


aV L1(dij) + awL2(dij) + aerrL5(dij) if ϕij ∈ χ(x̄

[n]
t , si)

avL3(dij) + aWL4(dij) + aerrL5(dij) if ϕij ∈ χ(x̄
[n]
t , si)

aV + aw + aerr = 1 aw + aW + aerr = 1

(3.48)

58



The two branches of p(dij |x̄
[n]
t ) function, are drawn in Figure 3.10, and their appliance is

shown in Figure 3.11 similarly to gaussian model in Figure 3.9.

The weighting of these likelihood function must respect some rules, the first is that the

weights must sum up one, this is to keep p(dij |x̄
[n]
t ) as a probability distribution over dij , the

other is the adjustment of the weights. To fit the propose of returning a higher likelihood

for particles closer to real state, aV must be higher than aw, this returns a higher value for

closer poses than for erroneous ones, but at the same time smooths the weighting, giving a

reasonable weight for poses slightly different.

1
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Figure 3.10: Likelihood functions for PF

w
[n]
t = p(Z|x̄[n]

t ) = η
L∏
i=1

Pi∏
j=1

w
i [n]
j (3.49)

logw
∗[n]
t =

L∑
i=1

Pi∑
j=1

logw
i [n]
j (3.50)

w
[n]
t =

exp
(

logw
∗[n]
t − lwmin

)
∑Np
n exp

(
logw

∗[n]
t − lwmin

) , lwmin = min
{

logw
∗[1]
t , · · · w∗[Np]

t

}
(3.51)

To weight the particles, the same method is used, assuming that measurements are inde-

pendent (3.49). Given the great amount of measurements, the operation 3.49 is hard to

compute given the limit of floating point number. To solve this problem, instead of com-

puting the likelihood function it is computed his logarithm (3.50). Let w
∗[n]
t denote the
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Figure 3.11: PF Likelihood functions appliance

unnormalized weight of particle n, in normalization, a mathematical manipulation is done

to avoid reaching the numerical floating point limits (3.51).

Observation model establishes a likelihood for each particle state, this way the algorithm

can have a posteriori belief over the state space, composed by a distribution of weighted

particles.

Notice that with the introduction of this non-gaussian, non-linear likelihood functions, the

filter avoids the use of barrier to compute sets χ(xt, si) and χ(xt, si), which was a time

consuming operation. It also uses all the information from sensors, the measures hitting the

vehicle and hitting the walls, this is an enormous advantage of PF, that might enhance the

estimation quality.

The reason for the expected enhancement with PF is that, now the system gathers infor-

mation from rays that hit the vehicle, like EKF, but also from the ones hitting the walls,

this last is relevant, because if a ray is passing and hitting a wall, it means the vehicle is not

blocking that laser ray, so we now have information on where the vehicle is and where it is

not, rather than just where it is.

Resample

The resample step is a very important part for the PF, it manages to keep a particle set

around the most likely states, avoiding the degeneracy problem, i.e. all particle weights but

one are closer to zero. It basically samples a set of particles from the current posteriori

distribution, giving them the same weight. After this step the belief is no longer represented

by a set of weighted particles, but just with a set of particles with a certain distribution over

the state space. Resample step maps the weights into space distribution.

The resample process operates over the set Φ−t turning it into Φ+
t , both sets represent the

posterior belief at time t. The resample is done by cloning particles from Ψ−t , so after the

process, Ψ+
t can have multiple particles with the same state. This seems illogic, but in fact

is done to save processing work, it relies on movement model to add random noise during
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the prediction step, so the particles with the same state in Ψ+
t will have unique states in Ψ̄t.

Some methods to resample from a discrete distribution are described in [5], [34], [27], the

implemented method is the stochastic sampling with replacement (roulette wheel selection)

where the particles are selected to be cloned with probability w
[n]
t . This is a simple method

with easy comprehension and implementation. The basic idea is to make a cumulative sum

of the weights Cumk (3.52) and then generate Np random values, uniformly distributed

from 0 to 1, unin, criteria to clone a particle from Φ−t to Φ+
t is shown in 3.53.

Cumk =

k∑
n=1

w
[n]
t Cum0 = 0 (3.52)

Ψ−t 3 x[k]
t = x

[n]
t ∈ Ψ+

t if Cumk−1 < unin ≤ Cumk (3.53)

To enhance the performance of PF, there are some methods to avoid resampling in

every iteration, the idea, apart from saving computational effort, is that a little spreading

of particle states helps to have a reliable estimation, resampling in every iteration does not

allow the particle states to go away from each other, and in some situation if the estimation

is not very exactly, it can even loose track of the true state. Intuitively, if the method keeps

all the particles in nearly the same state, there is no point in having various particles.

After some iterations passed from last resample, most of the particles have drifted away,

their weights became very small, irrelevant to the distribution. When a certain percentage

of particles are irrelevant to the distribution the method should resample again. To decide

when to to do it, two values are proposed in [20], the coefficient of variation cv2
t (see 3.54)

and effective sample size, ESSt, (see 3.55), the approach is to resample whenever ESSt

drops below a threshold, usually a percentage of Np.

cv2
t =

var
(
w

[n]
t

)
E2
(
w

[n]
t

) =
1

Np

Np∑
n=1

(
Npw

[n]
t − 1

)2

(3.54)

ESSt =
1

1 + cv2
t

(3.55)

Estimation

The filter belief is represented by a set of particles, but, from this set, what is the best way

to decide where the vehicle really is?

There are several ways to compute an estimation, x̂t, about the vehicle true pose xt, from

the set of weighted particles:

• Maximum weight – The particle with higher likelihood is considered the correct pose,

3.56. This approach is easy to compute bu has a lot of oscillation, as the particles

move side by side with the real pose, not always the same particle has the maximum

weight, the estimation can jump around the real pose, making the estimation accurate

but not precise.

x̂t = x
[n]
t , max

n
w

[1]
t · · · w[n]

t (3.56)

• Weighted mean – These estimation takes in consideration all particle states and

weights, it computes a weighted mean from all particles (3.57). This is good for the
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oscillation, it works like a low pass filter, but should be used only when the certainty is

high and all particles are together. It is dangerous if the distribution can turn multi-

modal, if half the particles are in one position and the other half somewhere else, the

mean between them can give an estimation in the middle which do not make sense.

x̂t =

Np∑
1

w
[n]
t x

[n]
t (3.57)

• Weighted mean around the maximum – This approach avoids the problems from

the previous two, it computes a weighted mean but only with particles in the vicinity

of the maximum likelihood particle, x
[n]max
t (3.58). It smooths the oscillations and

does not have the risk of making mean with particles far away.

x̂t =

∑
w

[n]
t x

[n]
t∑

w
[n]
t

if, ||x[n]
t − x[n]max

t || < vicinity radius (3.58)

3.3.3 Fault Detection, Global Localization and Pose Ambiguity

Similar to EKF, the PF can only rely on measurements to perceive if the estimated pose x̂t

is near the true one, xt.

Unlike the EKF, here, a likelihood value is computed for each particle state, in order to

attribute weights to particles, w
[n]
t . These likelihood values are greater if the particle state,

x
[n]
t is near xt. The approach to know if the pose is correct is to compute a mean value of all

likelihoods,w
∗[n]
t , before the normalization procedure (3.59). In fact given the huge quantity

of measurements on each iteration, the likelihood is a very good evaluator, it immediately

drops when the prediction drives away from true pose.

These indicator, Liket is computed in logarithmic scale, to keep the numerical limits of

floats, and even in this scale the drop in likelihood is abrupt when the estimation is wrong.

This indicator can be used to reinitialize the belief when it loses track of the vehicle. In our

context it is used in the kidnap situation explained in section . When the likelihood drops,

a probability pcm, proportional to the likelihood drop is added to the resample step. This

means that, every time the likelihood drops there is a probability to generate particles in

cm position. pcm is defined in 3.60, it is computed based on a ratio between the current

likelihood value, liket and a threshold, likethresh predefined by the typical values presented

by the likelihood in normal tracking conditions. cm is the mass center of measures hitting

the vehicle, here the PF must use the barrier to decide which measurements enter to the

calculus of cm, ( Eq. 3.32). The behavior of this method is illustrated in Figure 3.12, in

red, the magnitude of the error (3.61) and in blue, the likelihood. It is visible where the

kidnapping occurred, the likelihood immediately drops and particles star to migrate to cm,

after a few iterations the estimation is on the true pose again.

Liket =
1

Np

Np∑
n=1

logw
∗[n]
t (3.59)

pcm = max

{
0, 1− likethresh

liket

}
(3.60)

||lerr||(t) =
√

(x̂tr − xtr)2 + (ŷtr − xtr)2 (3.61)

62



||l
e
r
r
||[
m
]

0 50 100 150 200 250 3000

20

40

60

80

Time - Iterations

L
ik
e t

 

 

0 50 100 150 200 250 300-700

-650

-600

-550

-500

-450

Figure 3.12: Error magnitude ||lerr||(t) and likelihood liket

The geometric ambiguities are a problem due to vehicle symmetry, the laser measure-

ments can be very similar in several poses of the vehicle, the algorithm can converge to local

maximums in likelihood function instead of converging to the global maximum. With PF,

the geometric ambiguities are solved with a set of heuristics specifically created for the TCS

vehicle. The heuristics idea is to use the layout geometric information on the filter. There

are two distinct situations:

• 180◦ ambiguity – Figure 3.13(a) – The correct pose in this situation can only be

achieved if the vehicle is moving, by velocity integration. If it is stopped the measure-

ments are exactly the same for poses with 180◦ orientation offset.

So if the vehicle is moving there is a probability that the estimated pose is mistaken

in 180◦, p180. Using the multi-modal distribution capability of PF, on the resample

step, there is p180 probability of generating particles with 180◦ orientation offset from

the current estimation, x̂t. If those particles have a superior likelihood, then, particles

start to migrate more for that mode, and with some iterations all particles are in the

correct direction. p180 is a fixed value, and in every resample step, if the vehicle is

moving, there is this probability of generating particles with inverse direction, even is

the correct pose is correct.

• corner ambiguity – Figure 3.13(b) – Corner ambiguity only happens when the vehicle

is stopped, but it is also a very important situation, because if there is a system failure,

the vehicle stops, and the localization algorithm must know his correct pose before it

starts moving again.

To solve this ambiguity, when the vehicle is stopped a probability is inserted on the

resample step that the prediction is wrong, so this is the probability of generating

particles on the ambiguity poses. The working principle is equal to 180 ambiguity but

happens when the vehicle is stopped, and instead of an 180◦ offset the particles are

generated in different poses (3.13(b)).

With multi-modal distribution, PF enables the use of various heuristics like these that are

easy to implement and solve the problem with robustness. This is an advantage over the
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Kalman that has only unimodal gaussian representation.
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Figure 3.13: Geometric symmetry ambiguities
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3.4 Experimental Results

The methods were tested in a Tokamak building floor, like the one used on Chapter 2, but for

these experiments one VV door is open, like shown in map layouts on Figures 3.14. Tests

were performed for three different vehicle trajectories, one traveling the corridors in CW

direction 3.14(a), other in CCW, 3.14(b) and one real trajectory used to go from elevator to

VV 3.14(c). The designation for these trajectories, from now on, is CWtraj, CCWtraj and

VVtraj, respectively. Notice that these are trajectories for the vehicle wheels and not for

his center, and during the trials the localization methods estimate the pose of the vehicle’s

center, giving his position and orientation.

The vehicle used is the TCS, it has a rectangular layout as shown in Figure 3.15 that

START

STOP

(a) CWtraj

START

STOP

(b) CCWtraj

START

STOP

(c) VVtraj

Figure 3.14: Map layout and trajectories used to test localization methods

corresponds to V0 layout (3.62), where LTCS is the length and WTCS the width of the

vehicle.

The principal issue with this layout is the symmetry, from LRF sensor point of view it is

difficult to distinguish between corners. This leads to an ambiguity in pose estimation, the

dynamics integration with sensor measurements tend to help with this problem, but when

the vehicle stops there are no velocities to integrate and it is impossible to distinguish a

180◦ orientation error. For this ambiguities we must rely on specific heuristics explained in

section 3.3.3.

V0 =

[
−LTCS/2 LTCS/2 LTCS/2 −LTCS/2
−WTCS/2 −WTCS/2 WTCS/2 WTCS/2

]
, (3.62)

The sensory network layout is shown on Figure 3.14, these sensor placement results from

the optimization, in Chapter 2, for a network with four sensors, L = 4. The reason to

choose L = 4 is the trade of between coverage, around 97 %, and computational effort.

Both algorithms perform almost in real time, simplifying the experiments. Also it has

almost no redundancy, this way, the robustness of each method is tested, it must hold with

measurements from only one sensor most of the time.

Both methods run in a developed MATLAB simulation environment (Figure 3.16), where all

system’s parts are combined, vehicle dynamics, LRF readings and localization algorithms.

To execute these experiments some parameters were carefully chosen, concerning each part
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Figure 3.15: TCS vehicle layout and coordinate system
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Figure 3.16: MATLAB simulation environment

of the simulation model.

• Vehicle dynamics – The control of the vehicle is outside the scope of these thesis, and is

assumed to be perfect. The commands of velocity given to the vehicle are respected in

simulation. The noise is only considered in the vehicle position and not on velocities.

The time iteration ∆t is set to 0.3 s, from now on the iteration number is also defined

by t for simplicity.

• LRF – The range measurements from sensors are corrupted with zero mean gaussian

noise around the true range. This gaussian is modeled by the standard deviation,

σis, assumed to be 0.1 m, for all sensors. These is much superior than typical values

for LRF sensors [40]. It is overestimated, since the model does not include other

laser measurement problems, like outliers, or erroneous measurements due to angles

of incidence or hitting surface proprieties. The angular resolution, δis, is set to 1◦ for

all sensors.

• Localization system – The localization system is the crucial part, it accounts for all

possible error in the system, the assumed standard deviation for sensor measurements,
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σrange, is set to 0.5 m, to overcome every possible error.

For the position error it is assumed to have an zero mean gaussian error in every

pose component, the covariance matrix, Qt = diag(0.01m 0.01m 1◦). For PF

implementation,the number of particles, Np, is fixed to 100.

This section compares methods through this framework, with this sensory network, the

impact of sensor placement in localization performance is studied only on Chapter 4.

Comparison is based on a set of defined criteria that are required to have a suitable

localization algorithm. The motivation for this work is the operation on remote handling

operations in ITER, so these criteria are very important given the restricted tolerances inside

those buildings.

• Accuracy and Precision – Predicted pose x̂t must be a good estimation of the real

pose xt, tolerance is minimal. This criteria is evaluated by the magnitude of the error

et = x̂t − xt.
Precision is also important, major variations on estimation are not allowed, since, in

a real implementation, it would be used to control the vehicle. It is evaluated by the

error et, but not only from his magnitude, also from his variation. If the error et

has high frequency components along filter iterations, it means that the prediction is

always jumping around the correct pose. The covariance of filter beliefs can be used

to conclude about the precision as well.

• Reliability – This criteria is shaded by the previous two, we rely on a method if it

is both accurate and precise, but here, the reliability concept implies more, it tests if

the methods perform well in different types of situations, not just in normal operation.

Here the tests are about the time that the method takes localizing the vehicle correctly.

Time to globally localize the vehicle after a complete lost of vehicle track, for example

if the system has a complete break-down and needs to localize the vehicle immediately

after, typical kidnapping situation. With vehicle running and with vehicle stopped.

We insist on global localization with stopped vehicle because in ITER buildings if

something goes wrong, the most likely approach is to stop the vehicle until his pose is

known again.

• Robustness – For different parameters and different possible failures tests if the algo-

rithm still works and still performs well, it is robust. This includes robustness to noise,

to sensor failure or even to sensor miss placement. Obviously this criteria depends both

on localization method but also on sensory network displacement. Redundancy should

be verified in the network to account for possible sensor failures. Robustness is studied

over in Chapter 4 with different network displacements.

3.4.1 Accuracy and Precision

This is the main criteria evaluated in this Chapter, since we only do experiments for a single

network, the objective her is to compare performance for the localization methods and not

for the overall system.
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The most important value to evaluate this criteria is the error, we will consider the error

in position, for each iteration t, by the distance from real pose to estimated pose, ||lerr||(t)
(3.63), and the error in orientation by the difference between estimated angle and real angle,

θerr(t) (3.64). The error is assumed to be gaussian, so it is computed the mean and standard

deviation for each run of each method to establish the gaussian moments that describe the

error. Mean values are µ||lerr|| and µθerr , and standard deviations are σ||lerr|| and σθerr for

distance and orientation errors, respectively (3.65). There are errors in map coordinate sys-

tem, but there is an interest in knowing the error in vehicle coordinates. The new coordinate

system (Figure 3.15) takes in consideration the vehicle pose, being the reference origin in

vehicle center and the axis rotated with the vehicle. ~L is the axis along vehicle length and

~W along vehicle width.

Errors in those direction are computed by a geometric rotation in each iteration, depending

on θtr. Lerr(t) and Werr(t) are the projections of ||lerr|| on ~L and ~W directions.µLerr , σLerr ,

µWerr
and σWerr

are the gaussian moments of those projections.

On this coordinate system it is introduced a new value, it is a standard deviation of the

on-line filter belief, this is computed for every iteration t and is a good evaluator about the

certainty of estimation that filter has at time t. This is calculated based on eigenvalues of

current belief covariance matrix, Σt. EKF, provides this matrix directly from his belief. In

PF these matrix must be extracted from the particle set, Ψt, obviously this is an approxi-

mation of the particle distribution with a gaussian, accomplished with (3.66) and (3.67) for

mean and covariance matrix, respectively.

The system’s belief standard deviation is defined, at time t, by Lstd(t) and Wstd(t) in ~L and

~W directions, respectively, as represented in Figure 3.17. From values in this coordinate

system it is possible to observe if the system is prone to have error along vehicle’s length or

width directions. This is a considerable knowledge because in most trajectories the vehicle

moves mainly along the ~L direction, it is interesting to know if there are some correlation

between the movement direction, or the observation direction, and the errors.

Lstd

Wstd

x̂t

Figure 3.17: Estimation Standard deviation ellipse, Lstd, Wstd

||lerr||(t) =
√

(x̂tr − xtr)2 + (ŷtr − xtr)2 (3.63)

θerr(t) = θtr − θtr (3.64)

σ||lerr|| =

√∑IT
t=1

[
||lerr||(t)− µ||lerr||

]2
, µ||lerr|| = 1

IT

∑IT
t=1 ||lerr||(t)

σθerr =
√∑IT

t=1 [θerr(t)− µθerr ]2, µθerr = 1
IT

∑IT
t=1 θerr(t)

(3.65)
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x̄ =

Np∑
n=1

w
[n]
t x[n]

r ȳ =

Np∑
n=1

w
[n]
t y[n]

r

Np∑
n=1

w
[n]
t = 1 (3.66)

Σt =

[
σ2
xx σ2

xy

σ2
yx σ2

yy

]

σ2
xy =

∑Np
n=1 w

[n]
t (x−x̄)(y−ȳ)

1−∑Np
n=1

(
w

[n]
t

)2

(3.67)

The experiments are shown from Figure 3.19(a) to 3.27, according to Table 3.4.

Table 3.4: Experimental Results Figures

CWtraj CCWtraj VVtraj

EKF PF EKF PF EKF PF

Trajectory 3.19(a) 3.19(b) 3.22(a) 3.22(b) 3.25(a) 3.25(b)

||lerr|| and θerr 3.20(a) 3.20(b) 3.23(a) 3.23(b) 3.26(a) 3.26(b)

Lerr,Werr and Lstd,Wstd 3.21(a) 3.21(b) 3.24(a) 3.24(b) 3.27(a) 3.27(b)

Figures 3.19, 3.22 and 3.25, show the real path of vehicle center in dashed red, and path

of estimated position in blue when the vehicle travels in CWtraj, CCWtraj and VVtraj,

respectively. The initial jumps from the center to the path corresponds to method initial-

ization, the initial pose given is in the center, so each method has to localize the vehicle

globally, and just then follow his real trajectory.

To notice in these Figures that global localization is achieved almost in the beginning, which

means it does not need much iterations to do it, it performs fast and accurately. To repair

also that in general PF has a better performance, EKF tends to jump around the real pose.

Figures 3.20, 3.23 and 3.26, show the error ||lerr|| and θerr in both methods along the

trajectories, the error is initially very large, during global localization procedure but rapidly

decrease to very acceptable values. In both methods the position error is in the order of

centimeters most of the time, EKF has big jumps in prediction, this problem is yet to solve,

but is due to non-smooth behavior of measurement model, (section 3.2.2). The problem

with this jumps on the prediction is a peculiar situation where some measurements hitting

the vehicle in prediction and in reality, i.e. ϕij ∈ [χ(xt, si) ∩ χ(µ̄t, si)]. But some of them

hit different sides of the vehicle. The computation of jacobian matrix will have no correct

meaning, since it depends on the side of the vehicle where each laser beam hits. The behavior

will be as explain in Figure 3.18, these measurements will imply a wrong kalman gain and,

consequently, a bad update step. One possible solution is to ignore measurements that are

far away from the predicted ones, (dij − d̄ij > threshold) but is impossible to know which

side of the vehicle the sensor measurements are coming from, as we don’t know his pose.

Ignoring more measurements besides the ones already ignored, imply neglecting many useful
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information. This extra feature is not implemented during these experiments.

It is visible in Figure 3.23 the constant error of 180◦ this is a problem of EKF, as well, the

symmetry of the vehicle leads to very indistinguishable measures, and not even by velocities

integration the method can converge to correct orientation, as explained in section 3.3.3.

si

xt

x̄t

Figure 3.18: Non-smooth observation model issue

Figures 3.21, 3.24 and 3.27, show the errors and standard deviations of filters’ beliefs

along the different paths, for ~L and ~W directions. It is visible that, in normal operation,

(excluding the jumps in EKF and the initial global localization), the errors and standard

deviations are larger in ~L direction. This has a pure relation with the map geometry and

the distribution of the sensor network. TB is essentially formed by long corridors, in these

experiments the sensors are placed in the outer walls to maximize the coverage, but, as

the vehicle passes by, the laser rays tend to hit the side of the vehicle, measurements are

collinear with ~L, increasing the uncertainty in that direction.

PF tends to have less deviation, the integration of measurements that do not hit the vehicle

has an important role in this behavior. If particles start migrating in ~L direction, measure-

ments that do not hit the vehicle will rapidly decrease their weight.
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(b) PF estimation

Figure 3.19: Estimated and real path for vehicle center, CWtraj
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(a) EKF estimation
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(b) PF estimation

Figure 3.20: Estimation error, CWtraj
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(a) EKF estimation
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(b) PF estimation

Figure 3.21: Estimation error and variance along vehicle coordinates, CWtraj
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(a) EKF estimation
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(b) PF estimation

Figure 3.22: Estimated and real path for vehicle center, CCWtraj
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(a) EKF estimation
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(b) PF estimation

Figure 3.23: Estimation error, CCWtraj
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(a) EKF estimation
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(b) PF estimation

Figure 3.24: Estimation error and variance along vehicle coordinates, CCWtraj

74



(a) EKF estimation
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Figure 3.25: Estimated and real path for vehicle center, VVtraj
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(a) EKF estimation
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(b) PF estimation

Figure 3.26: Estimation error, VVtraj
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(a) EKF estimation
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(b) PF estimation

Figure 3.27: Estimation error and variance along vehicle coordinates, VVtraj
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Analyzing all the trajectories and tests done, Tables 3.5 and 3.6 compile the most sig-

nificant data that states the accuracy and precision of both methods. PF is the better

filter for these criteria, this is due to the possibility of having non-linear and non-gaussian

models associated, which fits better the current application. PF need some adaptations and

heuristics to solve non-smoothness problems, on the observation models, which inevitably

decreases the filter performance.

EKF performs well for cases where the prediction and real pose are very near, but with a

little deviation it can lose track of the vehicle very quickly, the filter is not stable is some

situations. So in terms of accuracy, precision and stability, the PF is the better choice.

Table 3.5: Estimation Errors, position [mm] and orientation [deg]

EKF PF

||lerr|| θerr ||lerr|| θerr

CWtraj
σ 944.18 17.63 33.38 0.69

µ 515.88 4.01 45.50 0.02

CCWtraj
σ 1365.3 23.96 30.40 0.91

µ 786.25 185.95 43.68 -0.07

VVtraj
σ 457.34 11.42 51.71 1.22

µ 336.91 -3.72 53.98 0.13

All traj. σ 1122.20 93.39 35.21 0.87

Table 3.6: Estimation Errors, ~L and ~W directions [mm]

EKF PF

Lerr Werr Lerr Werr

CWtraj
σ 838.06 636.28 47.41 30.25

µ -213.79 -70.71 4.00 -2.98

CCWtraj
σ 1249.90 933.78 45.42 27.69

µ 145.63 165.12 -2.31 -0.29

VVtraj
σ 522.33 207.19 50.32 50.68

µ -61.94 -59.86 -11.27 -12.83

All traj. σ 1026.7 760.3 47.18 33.21

3.4.2 Reliability

From results shown on Figures above we can make a judgment about the reliability of a

method, EKF often lose track of real pose and is not very realiable for this task. Moreover

there are some values, concerning global localization, that can also be analyzed to decide on

the reliability of a method for the ITER TB required tasks.

In this environment, there should be always a redundant way of resolving a problem, if

something goes wrong. One of the possible failures is the system losing track of the vehicle,

for some reason, power failure or hardware malfunction. The system must be capable when

the system is operable again, to localize the vehicle globally, if it is stopped or moving.
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Table 3.7 shows the number of iterations spent from loss of vehicle until localization with

a steady estimation around correct pose. Multiple experiments were made by moving the

vehicle from several different poses to others while the filter is paused, the values are a mean

from all experiments for the respective conditions.

We can see both methods converge very fast due to the heuristic adopted, computing the

measurements mass center to reinitialize the filter belief distribution. Sometimes a method

gets stuck in a geometric ambiguity, like described in section 3.3.3, to solve the problem,

PF generates with a certain probability new particles around the ambiguity states, when

stopped, in every corners and when moving, with 180 degrees of orientation offset. Kalman

does not allow this kind of distribution, with multiple modes, so there is no way to avoid

ambiguities with EKF, making the PF a more reliable method for this task as well. It

allows the insertion of known information about ambiguities, with high simplicity, by gen-

erating new distribution modes around those poses, while EKF is limited to the gaussian

representation.

Table 3.7: Global Localization, number of iterations

EKF Stopped PF Stopped EKF Moving PF Moving

73 38 48 30

3.4.3 PF computational effort

A particular test to evaluate the effect of number of particles, Np in the PF performance,

leads to Table 3.8, where we can see a small improvement, the standard deviations of the

errors tend to decrease as the number of particles grows, but the improvement is, at this level,

very small compared to the increasing computational effort, so, in simulation framework we

kept the particle number to Np = 100.

Large numbers of particles are typically necessary, in robotic localization, in large spaces

with multiple symmetric areas, where the particle distribution can become multi-modal,

and sometimes, for kidnapping situations there is the need to spread particles around all

possible poses. On our problem such situations are very limited, since the sensory network

is already global, the particles normally are very localized. A large number of particles is

not necessary here.

Table 3.8: Error Gaussian moments vs number of particles

Np µ||lerr|| [m] σ||lerr|| [m] µθerr [deg] σθerr [deg]

100 0.0429 0.0275 0 0.5490

150 0.0375 0.0281 0.0718 0.5539

200 0.0337 0.0199 0.0196 0.4498

300 0.0324 0.0193 0.0378 0.3376

400 0.0352 0.0236 0.0361 0.3254

500 0.0316 0.0211 0.0191 0.2930

From these experiments, and the results obtained in this framework, the filter that suites
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the problem is the PF, since his capability of maintain a non-gaussian belief is helpful to

solve the geometric ambiguity problems. The non-smooth, non-linear observation model is

also a weak link of EKF approach, being PF more robust for these issue.The first impact

from the simulations shown, and from the values obtained is that PF is the correct choice

for these kind of localization system.

3.5 Discussion

The Vehicle Localization chapter makes a extensive description of both EKF and PF filter

implementation for a distributed LRF sensor network, both methods have powerful capabil-

ities, but by the results shown the PF is a better choice for this kind of problem.

The accuracy, robustness and stability is better for PF estimation then for EKF, tests per-

formed during this chapter are a good proof of this. The choice for the three trajectories

shown CWtraj, CCWtraj and VVtraj, is directly connected to the functions of the TCS and

the future application, the two CW and CCW trajectories on the corridors are a good way

to evaluate the performance, since the corridors are the main area visited by the vehicle.

The last, VVtraj, is an example real trajectory.

The performance in special situations, like loss of track, stopped vehicle is also very im-

portant, inside the rad-hard scenario there is no room for failures, and the system must be

capable of self recovering from eventual malfunctions.

Table 3.9 has a summary evaluation of the two methods, where the classification has 3 levels,

- for bad performance, + for acceptable performance, with limitations or failures, ++ for

good performance.

Table 3.9: Summary localization method evaluation

EKF PF

Accuracy + ++

Stability + ++

Robustness + ++

Recovery from failure + +

Computation Effort ++ +

180◦ ambiguity - ++

Corner Ambiguity - +

From the tests performed and results obtained, the logical choice to integrate the system

localization system is the PF, although it becomes hard to compute for a very high number

of measurements. The computational effort pays back in performance.
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Chapter 4

Localization dependence on

sensor placement

The entire system proposed in this thesis concerns mainly the localization system, but also

an algorithm to optimize the sensor’s placements (Figure 4.1). We have saw the optimization

procedures in Chapter 2, where the network displacement is optimized taking in consider-

ation the coverage. In Chapter 3, two localization method are conceived and compared,

making no considerations about the sensor network that supplies the measurements.

This Chapter studies the effects of sensors parameters on localization performances, ana-

lyzing the main error characteristics facing different network configurations. It is basically

a chapter of experimental results with different network configurations. The objective is to

conclude whether optimal sensor placement is crucial to have a good performance, or the

algorithms are robust to multiple sensor placements and still perform at the same levels.

Another consideration is the computational effort necessary as the network grows, being

that an important topic because these methods should perform at real-time. Concerning

the sensors characteristics itself, it is also studied how different angular resolution affects

the localization performance.

The results shown in this chapter should help to refine optimization criteria, if necessary,

and contribute to the understanding of method robustness to failures on sensors.

Sensor
Data (x̂tr ŷ

t
r θ

t
r)

Sensor
Placement
Optimization

Sensors
Localization

SystemMAP

Figure 4.1: Entire System’s block diagram
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4.1 Sensor characteristics — Angular Resolution

To study the behavior of the system with the acquisition of more or less detailed measure-

ments, we made an experiment where the angular resolution, δis, assumes different values,

corresponding to the ones found on typical commercial sensors, [40]. The experiment is de-

scribed in Figure 4.2, vehicle travels along a circular path, and is observed from two sensor,

without occlusions. This tens all the possible angles of observation. The vehicle executes 20

laps around the path, and in the end, mean and standard deviation of the errors is computed

and shown on Table 4.1.

It is visible that, increasing the resolution the PF has better results, but EKF has not a clear

improvement . The behavior of PF is expected, as we have more measures, more informa-

tion, better knowledge about vehicle position. EKF has a non expected behavior, but, this

is due to non-smoothness of observation model, as cited in section 3.4, Figure 3.18. With

laser rays closer to each other, there is a higher probability of occurrence of these situation,

and so, the estimations tends to be less stable with more angular resolution.

Figure 4.2: Angular resolution experiment

Table 4.1: Error for different angular steps [mm]

δis = 1◦ δis = 0.5◦ δis = 0.25◦ δis = 0.125◦

µ σ µ σ µ σ µ σ

EKF
||lerr|| 95.7 83.9 77.1 85.4 58.5 61.7 70.2 115.3

θerr 0.01 1.58 -0.04 1.38 -0.01 1.21 -0.07 1.13

PF
||lerr|| 46.0 26.1 32.8 19.8 25.3 15.7 24.8 15.5

θerr -0.03 0.71 0.01 0.52 0.01 0.45 -0.01 0.44

4.2 Network characteristics

4.2.1 Number of sensors

The number of sensors affects directly the localization performance, with more sensors there

is more accuracy and more time spent per iteration. This section tests the effect of number of

sensors, L, in the system performance, the error of localization is tested using the optimized

networks from Chapter 2, the computational effort is measured by the mean time spent on

simulation for each configuration.
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Localization errors

The results obtained show that the errors in position and orientation are, in mean, inferior

as L grows. This was expected, intuitively with more information acquired by the system,

accuracy should be better. With more sensors, there is a larger area covered and an higher

probability to hit different sides of the vehicle, which minimizes uncertainty.

EKF results, show that this method’s performance increase a lot with the number of sensors,

it has much more reliable results with high laser ray density, than it has with low, but still,

has the worst performance, comparing to PF.

PF achieves better results, but his performance grows slowly with the number of sensors.

The methods behavior is a direct consequence of the observation models applied, being non-

smooth there are measurements pulling the EKF prediction away from the correct pose, but,

with more sensors, EKF almost neglects measurements that generate a bad behavior on the

update step. The measurements pulling the estimation to the correct pose are much more,

and overcome the ”bad-behaved” measurements.

PF is more robust to L changes, it performs much better for networks with few sensors, so

the increment of L has low impact in this filter.

Results for a network of just one sensor, are out of acceptable values, and do not account

for the conclusions, this is because the network does not cover wide areas of the map, when

the vehicle passes those areas, there is no way to do the update step, however, when the

system gets measurements of the vehicle the global localization is done well, as the results

shown are means along the all trajectory, for 1 sensor, the results have no meaning.

The values obtained in simulation for error mean are visible in Figure 4.3 and for error

standard deviation, in Figure 4.4 where we see that PF estimation is always more accurate

than the one from EKF. For the experiment with L = 3 EKF estimation has a big error in

orientation, this is caused by the 180◦ ambiguity that is not yet solved for this method.

Numerical results are in Table 4.2, proving that, except for L = 1, the accuracy is better for

PF than in EKF, and that PF is much more stable with L variation.

Table 4.2: Error for optimized network configurations [mm]

L = 1 L = 2 L = 3 L = 4 L = 5

µ σ µ σ µ σ µ σ µ σ

EKF
||lerr|| 9942.0 16453.1 811.1 1011.1 576.1 1199.1323.7 614.3365.7 873.8

θerr 103.58 79.81 0.66 14.30 -139.76 68.96 3.59 15.14 4.29 16.46

PF
||lerr|| 13647.3 23492.1125.8 173.7 52.8 37.8 44.6 31.8 42.2 27.5

θerr 14.67 39.32 -0.30 3.34 0.01 0.92 -0.25 6.87 -0.98 7.66

L = 6 L = 7 L = 8 L = 9 L = 10

µ σ µ σ µ σ µ σ µ σ

EKF
||lerr|| 220.1 568.7 123.4 206.9 73.9 58.9 85.3 91.1 72.7 60.5

θerr 21.22 55.41 0.47 4.16 0.08 1.26 0.25 2.57 -0.05 1.27

PF
||lerr|| 44.1 35.7 41.0 31.5 35.8 24.2 36.4 26.4 38.2 54.8

θerr -0.01 0.61 0.03 0.66 0.01 0.51 -0.04 0.58 -0.45 12.18
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Computational Effort

EKF and PF algorithms have a great difference considering these criteria, Table 4.3 shows

quantitatively and Figure 4.5 illustrates the curves of mean time per iteration depending on

the number of sensors placed in the scenario. Quantitative values are not very important,

since they depend on the machine where the algorithm runs, they are only used here for

comparison purposes and to analyze the behavior of the algorithm as the network grows.

As expected, the PF algorithm is much slower, and his computation time increases lineally

(Figure 4.5(b)) with the number of sensors. This is caused because in every iteration PF

analyzes every sensor measurement. EKF does not use all measurement, only the ones

hitting the vehicle, so as the network grows, the algorithm is not directly affected. The

small increment on computation time (Figure 4.5(a)), is due to the higher density of laser

rays. So there are, normally, more rays hitting the vehicle.

This may be a reflection topic, as the EKF good time performance is not just from his type

of implementation, with linear models and fast matrix inversion, but also from the fact that

it neglects many measures. PF, is slower because it repeats computations for every particle,

but also due to the evaluation of every measurement, every iteration.

Intuitively, the PF precision is better, in part, due to the integration of all measurements, this

gives information about where is the vehicle and where it is not, while EKF only integrates

information about, where it is. During normal operation, the laser rays containing the more

important information are the ones hitting the vehicle and close to it, measurements from

the other side of the map are irrelevant. It is likely that, with a better selection criteria, PF

could have a good performance with less computational effort.

Table 4.3: Time/iteration vs number of sensors [ms]

L 1 2 3 4 5 6 7 8 9 10

EKF 2.3 3.1 3.5 3.3 3.9 4.2 4.7 5.0 5.9 9.1

PF 34.4 61.0 94.6 123.5 144.7 173.6 203.6 235.0 264.1 294.1
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Figure 4.5: Mean time per iteration vs Number of sensors
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4.2.2 Redundancy

Different network displacements, cause changes in coverage and redundancy, but, for a large

number of sensors, the coverage is rarely affected, unless the sensors are putted all in the same

position. If sensors are distributed in the scenario, coverage is almost constant. Redundancy

is more sensible to the sensor placement, in this section we analyze the effect of coverage

R(S) on system’s accuracy and precision. The impact of redundancy on estimation quality

will dictate if the redundancy optimization is crucial for the overall system performance.

The experiments were performed with several networks with 8 sensors. L = 8 was chosen

due to the behavior during optimization, Figure ?? from Chapter 2 shows that, for the same

coverage, there are networks with wide values on redundancy. The results shown in Table

4.4 are the mean and standard deviation of the estimation error for vehicle traveling along

several trajectories in TB. Figure 4.6 represents the mean error on several runs of the vehicle

in th TB with a network with the respective redundancy value.

It is noticeable that as the redundancy grows EKF yields less error in estimation while PF

keeps around the same values. This is another proof of PF robustness, it is not much affected

by changes in redundancy. EKF is very sensible to the measures that hit the vehicle and

if it has more measures in each step, it has better accuracy, with redundancy reduction,

measures integrated by the EKF per iteration reduce as well. It contrasts with PF that has

no direct impact from redundancy, since coverage is not compromised it works with a very

acceptable accuracy.

This yields a conclusion that, with PF the optimized placing of the sensors is not very

important for a good response, but, taking other factors in consideration, as redundancy in

case of sensor failure, or optimization of the number of sensors needed. The optimization

process is important.

Table 4.4: Error for different redundancy R(ŜL), [mm]

R(S) = 86, 7% 77, 2% 68.0% 63.4% 56.4% 47.5%

µ σ µ σ µ σ µ σ µ σ µ σ

EKF
||lerr|| 73.9 58.9 85.9 81.4 99.8 117.3393.9 1096.1 658.0 1375.9982.3 1780.2

θerr 0.08 1.26 0.20 1.93 0.10 2.00 71.84 84.26 -65.34 79.36 43.84 67.27

PF
||lerr|| 35.8 24.2 39.5 26.2 36.8 24.2 40.7 31.3 36.5 25.6 42.7 29.3

θerr 0.01 0.51 -0.21 8.24-0.01 0.60 0.03 0.65 -0.01 0.55 0.22 0.78

4.2.3 Sensor Failure

This section shows the filters behavior with a single sensor failure, the experiment was

performed excluding turning off one of the sensors while the vehicle travels along the trajec-

tories. In the end is extracted the mean and standard deviation of the error. The network,

S, used was the optimized from Chapter 2 with 8 sensor and maximum redundancy, this

sensor displacement gives a coverage C(S) = 99.9% and a redundancy of R(S) = 86.7%

which is a good value for evaluate if, in case of failure, the system can still perform.

Table 4.5 show the values of reference, with no failures, for this network. The failure values
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Figure 4.6: Mean errors for networks with different redundancies

were obtained, for the same trajectory, by the mean for several experiments, with different

sensors failing.

From both methods, PF is much more robust, having just a small increase of mean error,

with failure of one sensor, in the order of 10 mm, EKF fails in this situation, the errors in

estimation are not acceptable when a sensor fails.

EKF depends much more on the quality of measurements than PF, putting PF has the most

robust method in failure situations.

Table 4.5: Sensor Failure Robustness , position [mm] and orientation [deg]

EKF PF

||lerr|| θerr ||lerr|| θerr

No Failures
σ 58.9 1.26 24.2 0.51

µ 73.9 0.08 35.8 0.01

Sensor Failure
σ 754.6 28.89 31.2 0.65

µ 351.4 40.0 40.1 0.03

4.2.4 Sensor Miss Placement

Until this section, the correct placement of the sensor is assumed to be known by the al-

gorithm, but what happens if there is an error on installation and the sensor has a small

deviation from the assumed position?

In this section this situation is simulated, giving a position in localization algorithm input,

and another position to simulate the sensor readings.

The objective is to test if the methods are robust to deviations from assumed positions,

because for all assembly processes there are maximum tolerances and the sensor placement
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is no exception.

The experience framework is similar to the one explained in section 4.1, with a circular path,

but now one of the sensors have a deviation dev along the wall. Figure 4.7 and Table 4.6

present the results from this experiment, which reveals that the methods are not robust to

this fact, tending to have an offset in the estimation, with amplitude similar to the devia-

tion. The installation of sensors should be a very accurate process to guarantee the system

performance. A ”first-use” calibration is also a possible solution, as the map is known, the

sensor can locate itself from map readings.

Table 4.6: Error for different sensor deviations [mm]

dev = 0 dev = 10 dev = 30 dev = 50 dev = 100

µ σ µ σ µ σ µ σ µ σ

EKF
||lerr|| 91.2 63.8 100.2 84.0 93.6 78.6 109.2 114.7 119.3 89.8

θerr 0.11 1.67 0.16 1.56 0.09 1.30 -0.09 1.68 0.30 1.64

PF
||lerr|| 46.2 26.6 47.9 27.9 50.7 28.8 54.9 31.5 78.5 39.4

θerr 0.04 0.66 0.02 0.65 -0.01 0.68 0.01 0.69 0.01 0.76
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Figure 4.7: Error mean for different sensor placement deviation

This Chapter is composed essentially by experimental results, but evaluating not only

the localization methods, but also the sensor network impact on the final system estimation.

A previous conclusion for this system is that the PF is the best choice, due to his robustness

and accuracy, and that optimization of sensor placement is important but only if it includes

coverage and redundancy. Coverage optimization only, like in Chapter 2, is sufficient to a

acceptable estimation of the vehicle pose, but in case of failure of one sensor, the estimation

degrades a lot.

Localization methods perform well and, with some adjustments, and adaptation to each

specific situation, with appropriate heuristics, it is expected that they could perform better.
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Chapter 5

Conclusions

The creation of a localization system for a vehicle, operating indoors, with no sensors on

board was the main objective of this thesis. It was achieved resorting to a laser range finder

sensor network, installed on building walls.

This network observes the surroundings, and, integrating measurements with a Bayes filter,

returns the estimated pose of the vehicle (position and orientation).

Being the sensors installed on walls, they are static, and their placement is crucial to the

system performance. The areas covered by the sensors, and the redundancy of the system

depend critically on sensor placement. An optimization procedure was developed thinking

in this critical dependency, the better the network, the better the performance. Simulated

Annealing was the selected method to optimize the network placements, it optimizes an

evaluation function that, on Chapter 2, contemplates only the covered area. This is the

main criteria to optimize, because if there are areas without coverage, observation on vehi-

cle cannot be made, and the estimation is far away from real pose.

From the several experiences with the localization methods, we conclude that redundancy

is also a very important factor to maximize. Besides allowing the system to work correctly

during a sporadic sensor failure, during normal operation it gives more information to the

system. If an area is observed from several sides, when the vehicle passes by, the uncertainty

on estimation is much smaller than observing from just one side.

Localization algorithms are based on Bayes filters, two proposes were evaluated, one based

on EKF and the other on PF. From Chapter 3 we can conclude that PF is the better suited

method for this application. It is more accurate, and robust then EKF, in every situation

tested.

The better behavior of PF is due to it’s better adaptability to non-linear, non-smooth pro-

cesses while the EKF is confined to gaussian representation. Filter belief representation is

also limited to a gaussian function for EKF, but PF can have multi-modal distributions,

which allows the introduction of simple heuristics that solve big problem. The 180◦ orien-

tation error or the corner ambiguity when the vehicle is stopped.

Having a global network also allows for fast global localization, since we have always mea-

surements from the entire building.

Computation effort is the weakness of PF, it is much slower then EKF, but, it still performs
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in real time, and pays back in estimation precision and accuracy.

Performance for the overall system, network plus localization method, is evaluated in Chap-

ter 4, where it is proven that PF is more robust networks with few sensors, to sensor failures

or to modification of sensor placements, decreasing redundancy. PF is the best method to

apply in this case, but still has some problems to solve, has described in next section (5.1).

Although it has some failures, and is still only working in simulation environment, it

yields promising results, not only for application in ITER, but for other application with

this type of requirements, or even to implement an AGV system where the paths can change

dynamically, there is no need to physically install cables or stripes on the floor. Today’s

factories are in constant layout change, depending on the product in manufacturing, so an

efficient way to have different paths for autonomous vehicles can be of industry interest as

well.

5.1 Future work and open issues

This thesis corresponds to the first concept of the proposed system, designed from the

requirement of having sensors outside the vehicle, it still has a lot to work on before it

reaches a practical stage. With this in mind, some future work and open issues are listed

here:

• Redundancy optimization — currently the SA algorithm only maximizes the cover-

age of the network, but as seen in Chapter 3 and 4 redundancy is also very important.

So a method for multiple criteria optimization should be addressed in future work, al-

though by including redundancy to the current evaluation function or by using methods

of multi objective optimization.

• Calibration system — in Chapter 4 we identify a problem on localization system,

it is intolerant to sensor deviation from predefined placement, it introduces an offset

on estimated poses.

Has this is a static error, it can be corrected with a calibration system. After assemble

stage there must be a system that given the map and the measurements from sensors

can calibrate the system and retrieve the correct placements for each sensor.

• PF measurement pre-selection — one of the current problems with PF solution

is the computational effort, as the sensor network grows the method becomes slower.

But from operation, it is known that when the estimation is near the correct pose, the

majority of measurement integrated are irrelevant to the system. Just the measure-

ments around the pose contain information. A method to filter the interesting and

irrelevant measurements can decrease a lot the effort needed to compute PF iterations.

• Multiple vehicles — If there are more than one vehicle traveling along the building,

it should be possible to track it also, apart from occlusions between vehicles, the

network is always capable to observe both. So a possible interesting development

of this technique is the inclusion of multiple objects to track, vehicles with different

shapes, etc.
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• Practical Implementation — It is still far away from this, much more work have

to be done, but still, it is a goal for future work, to implement this work on a practical

experiment.
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[6] V. Černỳ. Thermodynamical approach to the traveling salesman problem: An efficient

simulation algorithm. Journal of optimization theory and applications, 45(1):41–51,

1985.
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