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Abstract—The ITER (International Thermonuclear Experi-
mental Reactor) aims to prove the viability of fusion power.
During the maintenance, the transport operations has to be car-
ried out by autonomous mobile robots. The very high weight of
the loads to be transported, together with bullet-proof reliability
requirements, make the deployment of such robots a challenging
scientific and technological problem. The paper addresses the
problems of motion planning and the localization of these robots.
The motion planning is based on line guidance and free roaming
approaches to optimize trajectories for a rhombic like vehicle.
The localization system is based on a laser range finder network,
where two methods for pose estimation are used (Extended
Kalman Filtering and bootstrap Particle Filtering). Experimental
results, both from simulation and from small prototype are
presented, illustrating the described methods.

I. INTRODUCTION

The demand for energy is a critical problem the human
societies have to address in a near future. The problem rises
from the fact that fossil fuels are finite resources and renewable
energies alone will not be enough to meet the demand. In this
context, the ITER (International Thermonuclear Experimental
Reactor) project aims to prove the viability of fusion power
as an alternative and safe energy source. ITER will be built
in Cadarache, France.

The Tokamak Building (TB) of ITER (Fig. 1) is where
the reactor will be installed. During nominal and maintenance
operations, the human presence is forbidden due to the high

Fig. 1. Models of TB and HCB scenarios. Also displayed are detailed views
of the reactor, of the CPRHS, and of the rhombic configuration.

levels of radiation, and therefore, remote handling (RH) sys-
tems will play an important role in the ITER project. In [1]
and [2] there is a description of RH systems in ITER. One of
such systems is the Cask and Plug Remote Handling System
(CPRHS), a mobile vehicle responsible for RH operations
of transportation of contaminated components and equipment
between the TB and the Hot Cell Building (HCB). The largest
CPRHS has dimensions 8.5m x 2.62m x 3.7m (length, width,
height) and when fully loaded weights approximately 100T.
The CPRHS is divided into three main components: the Cask,
that contains the load, the Pallet, that supports the Cask and the
Cask Transfer System (CTS). The CTS acts as a mobile robot,
by driving the entire vehicle, or by moving independently
from the other components. The CTS has a rhombic kinematic
configuration, as described in [3] and depicted in Fig. 1. This
configuration allows to control the velocity, Vi, and orientation,
θi, of each wheel i ∈ {R,F}. Additionally it allows for both
wheels to follow the same path, in this paper referred as line
guidance, or for each wheel to follow a different path, referred
as free roaming, thus providing an increased flexibility, when
moving in the cluttered environments of the TB and HCB.

To perform the required RH operations, the vehicle must
move along optimized trajectories and for that purpose a
motion planning framework described in previous works [4],
[5], is used. This paper introduces two novelties: (1) the
requirement that all trajectories are generated in order to
maximize the part of the path that is shared by all the
trajectories, and (2) experimental results of the approach in
a 1:25 scale model real robot with rhombic kinematics.

A problem that is also addressed, in this paper, is the
localization of the vehicle, by using a network of laser sensors
placed in the scenario, along the lines presented in [6]. For
testing purposes of the localization framework, a prototype of
the CPRHS was built.

The paper is organized as follows: Section II presents
the motion planning methodologies, Section III introduces
the localization methods, Section IV presents the obtained
results and in Section VI the conclusions and open issues are
discussed.

II. MOTION PLANNING

The vehicle is required to move along a path that simulta-
neously maximizes the clearance and minimizes the distance



between the start and the goal poses (position and orientation).
Two motion planning methodologies, line guidance and free
roaming, were developed.

A. Line guidance

The line guidance motion planning requires that both wheels
of the vehicle follow the same path and, if adopted in ITER,
the CTS will act as an Automated Guided Vehicle (AGV).
This methodology is achieved in three main steps, [4], shown
in Fig. 2: (1) geometric path evaluation, (2) path optimization,
and (3) trajectory evaluation.

(1) Given the start and goal points, the map (a 2D projection
at floor level of the scenario’s 3D model, consisting in a
set of line segments that defines walls and other obstacles)
is decomposed into a set of triangles, by using Constrained
Delaunay Triangulation, [7], to account for all walls. Then, the
algorithm finds all sets of sequence of triangles that contain
and link the start and goal points. Each sequence of triangles is
converted into a sequence of points (mid point of the common
edge of two consecutive triangles) yielding a path, shown in
top left of Fig. 2. The shortest path is chosen as the geometric
path.

(2) The initial geometric path does not guarantee a collision
free path for a rigid body, with dimensions, and the path is
not smooth (top center of Fig. 2). The optimization phase is
a trade off between two criteria: clearance from obstacles, by
increasing the distance from the vehicle to walls, and path
smoothness, that results in shorter and smoother paths. The
optimization procedure uses the elastic band concept, [8],
where the path is modelled as an elastic band, similar to a
series of connected springs subject to two types of forces:
internal and external forces. The first are the internal elastic
forces, whose magnitude is proportional to the amplitude of
displacement and determine that the path becomes shorter. The
repulsive forces are responsible for keeping the path, and thus
the vehicle, away from the obstacles.

(3) The final trajectory is obtained by defining the velocity
of the vehicle at each point of the optimized path, shown in
top right of Fig. 2. In order to reduce the risk of collision
in the case of a major malfunction, the velocity is reduced
once the distance to the nearest obstacle decreases below a
threshold value.

There are particular situations where given the above ap-
proach it is not possible to obtain a feasible solution, as illus-
trated in Fig. 3 - Left, where a clash occurs. By considering
maneuvers in the motion planning procedure, it is possible
to overcome this problem in these particular situations. A
maneuver exists when the vehicle stops and changes its
motion direction, in order to achieve a specified orientation,
as illustrated in Fig. 3 - Right. A maneuver requires splitting
the path in two sub-paths with the constrain that the final
pose of the first sub-path is the initial pose of the next sub-
path. Multiple maneuvers can be considered, with the path
optimization being applied to each sub path. The point(s) of
maneuver are introduced manually and its position can be set
to be fixed or adjusted during optimization.

Fig. 2. Top (from left to right) - geometric path, poses over the geometric
path and final optimized path shared by both wheels; Bottom (from left to
right) - search for initial path by RRT, poses over the initial path and final
optimized path with each wheel following its own path.

Fig. 3. Left - path shared by both wheels of the vehicle, with collision;
Right - path with each wheel following its own path, without collision.

B. Free roaming

The free roaming motion planning does not constrain both
wheels to the same path and each wheel can follow a different
path. This methodology draws inspiration from the elastic
band concept, [8], and was proposed in [5]. The vehicle’s
poses along the path act as rigid bodies, connected through
internal interactions and subjected to external repulsive forces,
resulting from the closest obstacles.

The initial path is given by the Rapidly-Exploring Random
Tree (RRT), [9], which provides a collision free sequence
of poses between a start and goal poses. The initial path,
however, does not guarantee the maximization of clearance
to obstacles nor path smoothness. The optimization procedure
works then as a post processing method, that improves the
quality of the initial path. Each pose is treated as a rigid body,



subjected to two types of forces: internal forces and external
forces. The internal forces are the elastic force and torsional
torque, originated from the virtual elastic and torsional springs,
responsible for keeping consecutive poses connected and thus
guaranteeing path smoothness. The external forces are the
repulsive forces and torques that act on the rigid body (the
vehicle’s pose), resulting from obstacle proximity.

The final trajectory is generated by defining the velocity as
a function of the minimum distance to obstacles, as described
in section II-A. This motion planning methodology allows to
fully explore the flexibility of the rhombic configuration, since
the wheels are not constrained to follow the same path. In
Fig. 4, it is shown an example where this methodology finds
a solution that does not exist with the previous approach 1.

Fig. 4. Left - path shared by both wheels for a vehicle entering a port cell in
TB, Center - path shared by both wheels, with collision, for a second vehicle
entering the same port cell; Right - solution without collision with each wheel
of the second vehicle following its own path.

C. Maximization of the common path of different paths

Given a set of paths that share the same starting pose, but
differ on the arriving location, it becomes apparent that in
terms of minimizing the areas accessed by the vehicle, it is
logic, and required in ITER, to maximize the part of each
path that is common to all paths. This leads to the definition
of a common path, that is shared by all optimized paths, as
shown in Fig. 5, where the common path starts in the lift area,
covers a circular area around the reactor and returning to the
lift. When a new path is generated, only the part that differs
from the common path is optimized. This is performed by
finding the nearest point on the common path, to the goal point.
Usually, this nearest point is not the best starting condition for
the path optimization, because it may require for the vehicle to
make a sharp turn. A user defined threshold sets how further
back from this nearest point the splitting point is defined
(Fig. 5 - Right). When the start and goal configurations are
defined, the optimization procedure can begin with either of
the approaches described in II-A or II-B.

III. LOCALIZATION

The localization problem consists in the estimation of the
real pose relative to a global reference frame. During RH

1It is here assumed without proof that if the optimized path found by one
of the presented algorithms incurs in a clash, then there is no feasible solution
under the given constraints.

Fig. 5. Left - common path in TB depicted in grey; Right - detail view of
an optimized path between the splitting point and the final point.

operations in ITER, the main radiation source will be the
vehicle load, which means that on board sensors have a long
and intense exposure which can shorten their lifetime. To
overcome this constraint, it is proposed to install the sensors
for vehicle localization on the building walls, reducing the
exposure to radiation. This poses the challenge of where to
place the sensors in the scenario and of how to perform
the localization. Laser Range Finders (LRF) were adopted as
sensors, since they are accurate and can be well shielded from
radiation. The integration of a network with several sensors is
necessary to cover all possible vehicle positions.

A. Sensor Network Optimization

A LRF sensor network is composed by several sensors, each
one with the possibility of having a different parameterization.
Sensor position and orientation are variable parameters chosen
in the optimization process. Sensor field of view, angular
resolution and standard deviation for distance measurement
errors are fixed parameters that depend on the equipment. The
optimization, herein described, maximizes, for a given number
of sensors, the area obtained by the union of several visibility
polygons, returning the sensor network parameterization with
maximum coverage. An example LRF sensor network, with
two sensors, is shown in Fig. 6 with visibility polygons for
the respective sensors. The benefit of adding one more sensor
to a network decreases as the number of sensors already
present increases, [6]. The number of sensors to install is
not optimized, it is picked based on a cost-benefit analysis
of adding an extra sensor.

B. Bayesian approaches for Localization

Localization systems, with the framework presented in Fig.
6, give an estimation of vehicle pose integrating the mea-
surements coming from the previously optimized LRF sensor
network and the vehicle odometry.

Acquired measurements are distances from the correspond-
ing LRF sensor to the nearest obstacle, in each direction. These
directions depend only on sensor angular resolution and on the
field of view. For each measurement acquisition, the directions
are considered fixed and only the distances differ according to
the surrounding obstacles.
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Fig. 6. Sensor Network and Localization system framework.

The two localization methods presented in this paper are
standard Bayesian approaches, the Extended Kalman Filter
(EKF), and bootstrap Particle Filter (PF) ??, with new obser-
vation models, developed for this framework. The observation
models are the main innovative contribution and this section
is focused on its understanding.

1) Extended Kalman Filter: EKF uses a Jacobian matrix to
relate the errors between the real and predicted measurements
given estimated pose (innovation). There are four sets of
measurements: i) the ones hitting the vehicle in real pose,
ii) hitting the vehicle in predicted pose, iii) not hitting the
vehicle in real pose, iv) not hitting the vehicle in predicted
pose. A measurement is integrated by EKF only if it belongs
to both i) and ii). This means that not all measurements
can be integrated, only the ones that hit the vehicle. The
residuals corresponding to measurements hitting the scenario
walls have a Jacobian entrance equal to zero, because the
distance measured to the wall do not depend directly on
vehicle pose. This fact forces the method to neglect some
information. Moreover, if the prediction is too far from reality,
EKF does not integrate any measurement.

EKF predicted pose must be always near the real pose,
otherwise the update step of EKF is ineffective. To overcome
this problem, the number of measurements integrated on each
iteration, is monitored, and, every time it drops below a
certain threshold, EKF is restarted. It is possible to get a
position estimation, for the restarting iteration, transforming
measurements hitting the vehicle into Cartesian points and
doing his mass center. The initial belief given for the restarting
iteration of EKF has this mass center position, a random
orientation and a high uncertainty. As the position is close to
real one, the estimation converges to the real and uncertainty
reduces.

The restarting step enables the global localization on the
scenario, something that is not possible, using EKF, with on-
board sensors.

2) Particle Filter: PF uses a set of particles to represent
hypothetic poses of the vehicle. For each one of these poses,
the observation model compares the predicted measurements
with the real ones, assigning a likelihood to the respective
particle.

It is possible, with this approach, to integrate all measure-
ments from the network, and to adapt the observation model
to the framework.

Observation model is a likelihood function that assumes
measurements independent but not identically distributed. It
distinguish two different distributions if the predicted mea-
surements hit the hypothetic vehicle or not.

Let N (µ, σ2), be a normal distribution with µ mean and σ2

variance. σ2 is the variance assumed for the measurements,
always greater then real measurement variance. U(a, b) is an
uniform distribution with limits a and b.

For each measurement, the distribution is,
i) If it hits the vehicle, a linear mixture of:

• N (d, σ2), modeling measurements that hit the vehicle
also in reality;

• N (D,σ2), modeling measurements that hit the walls
in reality;

• U(0, range), modeling outliers.
The weight of N (d, σ2) should always be greater then the
others to reinforce the particles with correct prediction.

ii) If it hits the walls, a linear mixture of:
• N (D,σ2), modeling measurements that hit the walls

also in reality;
• U(0, D), modeling measurements that hit the vehicle

in reality;
• U(0, range), modeling outliers.

The weight of N (D,σ2) should be the highest to ensure
that correct predictions have greater likelihood.

Being d the predicted distance to the vehicle, D the known
distance to the nearest wall and range the maximum range
of the sensor. PF have the possibility for global localization,
using the same principle used for EKF. When the measure-
ment likelihood drops abruptly, the probability of generating
particles around the measurement mass center rises, and, as
PF can represent multi-modal distributions, a new mode starts
to appear on this mass center. After some resample steps, all
particles migrate near the correct pose of the vehicle and the
likelihood rises again. The situation is similar to kidnapped
mobile vehicle, but, with a global network of sensors, an
approximation of the real pose, the measurement mass center,
is easily discovered.

IV. SIMULATED RESULTS

The simulation results were obtained with a software ap-
plication tool developed in MATLAB environment: the Tra-
jectory Evaluator and Simulator (TES), as illustrated in Fig.
7. The TES was developed not only to generate trajectories
for ITER scenarios, but also to generate trajectories in a
general map. The TES has a diversity of features that, besides
trajectory generation, allow to do reports with information on
the minimum distances to obstacles along the trajectories, as
well as the location of the critical points in the scenario, to
assess the risk of collision. It provides the area spanned by
the vehicle along the path and it provides the option to export
this information as a 3D CAD model to a CAD software, such
as CATIA. Besides trajectories, TES can also simulate a basic
guidance and localization system for the vehicle, controlling
it along a given trajectory and giving a pose estimation based
on simulated noisy LRF measurements.



Fig. 7. TES main window and features.

A. Optimized Trajectories

In TB, the CPRHS is required to dock in predefined lo-
cations during nominal operations. However, if a malfunction
occurs during docking, trajectories for rescue missions were
also required, where a CPRHS has to provide assistance to
an already docked CPRHS (e.g., Fig. 3 Center and Right).
In Fig. 8, optimized paths for docking and the corresponding
optimized rescue paths are shown for one of the floors of TB.
A total of 232 trajectories were computed in TB. The HCB is
where the CPRHS is required to dock for loading/unloading
operations and where parking areas for the vehicle are pro-
vided. On the right side of Fig. 8 it is shown optimized parking
paths for one of the levels of HCB. A total of 304 trajectories
were generated in HCB.

Fig. 8. Left - optimized paths for rescue missions of the CPRHS in TB;
center - optimized paths for docking missions of the CPRHS in TB; right -
optimized paths for parking missions of CPRHS in HCB.

B. Localization

The two localization approaches were implemented and
compared in TES. The simulation results, consider a network
of 4 sensors, with angular resolution of 1o and standard devia-
tion for distance measurement of 10cm. Both approaches can
localize the vehicle correctly due to the adopted observation
models. EKF performance, in Fig. 9, presents some limitations
in accuracy and robustness but it has a very interesting
computation performance. In particular situations, like the one
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Fig. 9. Real trajectory (green) EKF estimated trajectory (blue) (left), Zoom
box with estimated positions (blue) and certainty ellipses (red) (top right),
Position error along the path (bottom right)

highlighted in Fig. 9 (top right), EKF loses stability and the
estimation error becomes very high. Red ellipses show that
EKF estimation has an unacceptable high uncertainty, facing
the tight safety margins inside ITER.

PF performance, in Fig. 10, presents very reliable results,
it is very accurate and robust to all situations tested in ITER
scenarios. The results show very small uncertainty, shown by
the small red ellipses in Fig. 10 (top right), low estimation
errors, and no losses of stability. PF downside is the high
computation effort required, it is 30 times slower then EKF
for the sensor network used on this simulation. PF integrates
all measurements while EKF takes only the ones hitting the
vehicle. Position estimation errors, for EKF and PF, along the
trajectory, are presented on Fig. 9 and Fig. 10 (bottom right),
respectively. Both approaches are initialized with random esti-
mation, explaining the high estimation error in the beginning.
Both approaches are able to converge from this random pose
due to the global localization feature explained on previous
section. Comparing both approaches, EKF estimation error is
unacceptable for an ITER application while PF present very
reliable results. On this simulation, mean position estimation
error for EKF is 0.9m while for PF it is 0.06m. Maximum
estimation error, after global localization, is 5.3m for EKF and
for PF is 0.19m. From these two localization approaches, PF
is the most appropriate for application with this framework.
EKF performance rises with the number of sensors installed
on the scenario. With many sensors it is guaranteed that EKF
always integrate many measurements becoming more accurate.
PF becomes more accurate with more sensors, but with very
high computation cost.

V. EXPERIMENTAL RESULTS

The experimental setup, shown in Fig. 11 (left), includes a
single Hokuyo LRF sensor and a CPRHS prototype built in
LEGO Mindstorms. The LRF sensor has a field of view of
240o and angular resolution of 0.36o. The prototype, with a
1:25 scale, describes a simple trajectory in a rectangular map
without obstacles. For simplicity, the described trajectory is
not a result from optimization, it is the result from simple
commands sent directly from operator to the vehicle.
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Fig. 10. Real trajectory (green) PF estimated trajectory (blue) (left), Zoom
box with estimated positions (blue) and certainty ellipses (red) (top right),
Position error along the path (bottom right)

Fig. 11. Experimental framework (left), Error along trajectory (right)

Way points along the trajectory were manually registered
and compared with the ones estimated by the localization
system (Fig. 12). The position estimation error, presented in
the plot of Fig. 11 (right), is below 0.3cm and the orientation
error is less then 8o. The results are biased by the erroneous
odometry, due to prototype encoder resolution and wheel slip-
page. The error between real position and integrated position,
given the vehicle odometry, is also shown in Fig. 11 (right).

The estimations, for this experiment, were computed offline.
The data acquisition rate was 5Hz, but PF mean computation
rate, with 300 particle, was 4Hz. The PF approach achieves
good results, even with a highly erroneous odometry, the main
problem for a real time implementation is the computational
effort required.

VI. CONCLUSIONS AND OPEN ISSUES

For the generation of the optimized paths, the two proposed
path planning methodologies were used. The majority of the
trajectories are feasible with the line guidance approach, in-
corporating maneuvers whenever necessary. The free roaming
approach is of great importance in rescue situations, where the
flexibility of the rhombic configuration is explored to compute
feasible paths, where the line guidance method fails.

The implemented localization methods, EKF and PF, using
a sensor network of LRF outside of the vehicle, were able to
locate the vehicle in a simulated environment. The PF method
proved to more reliable than the EKF, even in the case of
sensor failure, however, the performance is highly dependent
of the total coverage by the sensor network.

Further work is required to evaluate the performance of
the localization methods in terms of sensor redundancy and
compare the localization results between line guidance and

Fig. 12. Experimental trajectory with real vehicle poses (black) and Estimated
poses (red)

free roaming trajectories. Control methods in real time that
take into consideration the experimental localization results,
should also be addressed.
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