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This paper presents a statistical method for the calibration of a redundantly actuated hybrid
serial-parallel robot IWR (Intersector Welding Robot). The robot under study will be used to
carry out welding, machining, and remote handing for the assembly of vacuum vessel of the
ITER reactor. The robot has ten degrees of freedom (DOF), among which six DOF are
contributed by the parallel mechanism and the rest are from the serial mechanism. This kind
of structure can combine both advantages of the serial and parallel mechanisms together to
satisfy the practical requirement, but due to the redundant degrees of freedom and structures,
it is very difficult to identify the geometrical errors by using conventional calibration
methods. In this paper, a kinematic error model which involves 54 independent unknown and
immeasurable geometrical error parameters caused by the manufacturing and assembly
processes is developed for the proposed robot. Based on this error model the mean value of
the unknown parameters are statistically analyzed and estimated by means of Markov Chain
Monte Carlo (MCMC) approach. The MCMC algorithm has advantages in solving high
nonlinear problems and obtaining probability distributions with noise-corrupted physical data,
which is very suitable for the study of our proposed robot, meanwhile, it also can be adopted
to the robot calibration of similar structure. In this article, the simulation is conducted by
introducing random geometric errors and measurement poses which represent the
corresponding real physical behaviours. The validity and effectiveness of the MCMC
approach for the proposed application is also examined, and the results of the marginal
posterior distributions of the estimated model parameters are shown in figure 1.
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Figure 1: marginal posterior distributions of the estimated model parameters



