Design of Coolant Purification System for the European Test Blanket Modules

<u>A. Ciampichetti^{1,6}</u>, A. Aiello^{1,6}, S. Nitti^{1,6}, I. Ricapito², K. Liger^{3,6}, D. Demange^{4,6}, C.

Moreno^{5,6}

¹ENEA CR Brasimone, 40032 Camugnano (Bo), Italy

²Fusion for Energy, 08019 Barcelona, Spain

³CEA, DEN, DTN/STPA/LIPC, Cadarache, 13108 St Paul-lez-Durance, France

⁴Karlsruhe Institute for Technology, ITEP-TLK, Postfach 36 40, 76021 Karlsruhe

⁵EURATOM-CIEMAT Association, 28040 Madrid, Spain

⁶European TBM Consortium of Associates

Corresponding author: and rea.ciampichetti@enea.it

The HCPB (Helium Cooled Pebble Bed) and HCLL (Helium Cooled Lithium Lead) Test Blanket Modules (TBMs), developed in EU to be tested in ITER, adopt helium at 8 MPa as primary coolant.

This paper presents a detailed design of the TBMs coolant purification system (CPS) based on the need to remove permeated tritium and gas impurities.

The following steps have been considered: identification of CPS design requirements; selection of the most promising technologies for CPS; design of the components, indications on instrumentation and procedures for tritium balance.

The proposed solution is a three stage process constituted by an oxidiser to convert Q_2 and CO to Q_2O and CO₂, an adsorption step, performed on molecular sieve at room temperature to remove Q_2O and CO₂, and a final step performed on a heated getter to remove residual impurities.