<empty>
Home Trabalhos Científicos Artigos em Revistas Científicas Nuclear Fusion

Nuclear Fusion

A cross-tokamak neural network disruption predictor for the JET and ASDEX Upgrade tokamaks

  C.G.Windsor, G. Pautasso, C. Tichmann, R.J. Buttery, T.C. Hender, JET EFDA Contributors and the ASDEX Upgrade Team
  2005
  DOI
 
Resumo
 
First results are reported on the prediction of disruptions in one tokamak, based on neural networks trained on another tokamak. The studies use data from the JET and ASDEX Upgrade devices, with a neural network trained on just seven normalized plasma parameters. In this way, a simple single layer perceptron network trained solely on JET correctly anticipated 67% of disruptions on ASDEX Upgrade in advance of 0.01 s before the disruption. The converse test led to a 69% success rate in advance of 0.04 s before the disruption in JET. Only one overall time scaling parameter is allowed between the devices, which can be introduced from theoretical arguments. Disruption prediction performance based on such networks trained and tested on the same device shows even higher success rates (JET, 86%; ASDEX Upgrade, 90%), despite the small number of inputs used and simplicity of the network. It is found that while performance for networks trained and tested on the same device can be improved with more complex networks and many adjustable weights, for cross-machine testing the best approach is a simple single layer perceptron. This offers the basis of a potentially useful technique for large future devices such as ITER, which with further development might help to reduce disruption frequency and minimize the need for a large disruption campaign to train disruption avoidance systems.
Versão Portuguesa Englsih Version Páginia Inicial / Main Page

[ Artigos em Revistas Científicas ] [ Comunicações a Reuniões Científicas ] [ Teses de Mestrado ] [ Teses de Doutoramento ] [ Relatórios Internos ]

Webmaster
Copyright © 2008 Centro de Fusão Nuclear